Как маркируются углеродистые инструментальные стали?

Для того чтобы обеспечить быструю и качественную обработку при изготовлении режущего инструмента используются углеродистые инструментальные стали.
Содержание

Как маркируются углеродистые инструментальные стали?

Углеродистые инструментальные стали

В машиностроении и других областях промышленности производственная деятельность заключается в выпуске заготовок и деталей, которые получаются путем механической обработки. Современные материалы могут обладать весьма высокими показателями твердости и прочности, за счет чего усложняется их обработка. Для того чтобы обеспечить быструю и качественную механическую обработку при изготовлении режущего инструмента или их кромки используются углеродистые инструментальные стали. Их особенность заключается в высокой стойкости к механическому воздействию.

Подобные металлы также могут использоваться при выпуске ответственных деталей, к которым предъявляются высокие требования в плане прочности и твердости.

Основные характеристики

Рассматривая основные свойства инструментальной стали следует отметить нижеприведенные моменты:

  1. Низкая чувствительность к перегреву. При механической обработке снятие слоя материала с заготовки происходит за счет оказываемого требования. Нагрев металла приводит к изменению его основных качеств. Поэтому углеродистые инструментальные качественные стали не нагреваются даже при длительном трении с другими поверхностями.
  2. Низкая чувствительно к привариванию к обрабатываемым деталям. Из-за оказываемого давления при подаче инструмента на момент обработки заготовок зона трения может несущественно нагреваться, что становится причиной повышения пластичности некоторые материалов. Если инструментальная сталь будет привариваться при этом к поверхности возникнет дополнительное сопротивление и качество получаемой детали существенно снизиться.
  3. Для того чтобы упростить обработку металла его делают боле восприимчивой к обработке методом резки.
  4. Восприимчивость к прокаливанию также определяется особым химическим составом.
  5. Высокая пластичность в горячем состоянии позволяет получать заготовки метод плавления металла.
  6. Высокое сопротивление процессу обезуглероживания позволяет получить наилучший результат при проведении закалки или других процессом химико-термической обработки.
  7. Во время обработки может возникать ударная нагрузка, которая в большинстве случаев становится причиной образования трещин. Высококачественная углеродистая инструментальная сталь не имеет подобного недостатка.
  8. Износостойкость и высокая прочность, твердость поверхности.

Химический состав углеродистых инструментальных сталей

Химический состав инструментальных углеродистых сталей во многом определяют основные эксплуатационные качества металла.

Применение

Применение инструментальных углеродистых сталей во многом зависит от химического состава. Чаще всего применяется для получения:

  1. Режущего инструмента. На протяжении многих лет для изготовления инструментов использовали обычную сталь, которая в процессе работы могла нагреваться и быстро изнашиваться. На тот момент устанавливались станки токарной и сверлильной группы, которые могли проводить обработку только при низкой скорости и невысокой подачи. Появление современного оборудования, в частности станков с ЧПУ, привело к повышению требований, предъявляемых к инструменту. Только появление инструментальной стали и твердых сплавов позволило полностью раскрыть потенциал современного оборудования. Также не стоит забывать, что для получения качественных поверхностей должна существенно увеличиваться скорость подачи, повысить производительность можно при увеличении подачи. Современные режущие инструменты могут выдерживать неоднократные циклы нагрева и охлаждения, срок эксплуатации при этом увеличивается в несколько десятков раз.
  2. Высококачественных деталей. Примером можно назвать конструкцию ДВС, которая имеет поверхности с точными размерами и шероховатостью. Для того чтобы при эксплуатации подвижные элементы не меняли свою форму по причине нагрева их изготавливают из инструментальной стали.
  3. Приборов, применяемых для проведения точных измерений. Для получения небольших деталей с точностью линейных размеров в несколько сотен миллиметров заготовка не должна нагреваться или деформироваться за счет оказываемого давления со стороны режущего инструмента.
  4. Литейной прессформы, которая должна выдерживать существенное давление.

Применение углеродистых инструментальных сталей в зависимости от марки

Для изготовления деталей больше всего подходить марка У7 или У7А, для изготовления режущего и другого инструмента У10 или У12. Данная закономерность связана с тем, что для получения режущего инструмента должны использоваться более твердые металлы.

Маркировка углеродистых инструментальных сталей в данном случае указывает на процентное содержание углерода и наличие других примесей.

Свойства углеродистой инструментальной стали во многом определяются концентрацией углерода – чем больше, тем поверхность тверже, но повышается и хрупкость.

При холодном прессовании могут применяться марки У10 – У12. Проведенные тесты указывают на то, что их твердость составляет 57-59 HRC. Среди особенностей отметим:

  1. Достаточно высокую вязкость.
  2. Высокий уровень сопротивления деформациям пластического типа.
  3. Повышенная износостойкость.

Если габариты инструмента большие, то могут применяться сплавы, в состав которых включаются полезные примеси.

Классификация

Принято разделять инструментальные качественные стали на 5 основных групп:

  1. Износостойкие, теплостойкие и высокотвердые – группа, представленная быстрорежущей легированной сталью. Кроме этого в данную группу относят сплавы с ледебуритной структурой, которая характеризуется повышенной концентрацией углерода (более 3%). Применение инструментальных углеродистых сталей данной группы заключается в изготовлении инструментов, которые могут подвергаться воздействию высокой температуры из-за установки высоких скоростей резания.
  2. Теплостойкие и вязкие стали представлены сплавом, который имеет в своем составе молибден, хром и вольфрам. Химический состав инструментальной углеродистой стали данной группы характеризуется низким значением концентрации углерода.
  3. Нетеплостойкие, вязкие и высокотвердые стали имеют небольшое количество примесей и среднее значение углерода. Данной группе характерен невысокий показатель прокаливаемости.
  4. Средняя теплостойкость, высокая твердость, износостойкость – качества, свойственные металлам с 2-3% углерода и 5-12% хрома.
  5. Низкая устойчивость к теплу и высокая твердость характерны сталям с заэвтектоидной структурой. В большинстве случае они не имеют легирующих элементов или их концентрация очень мала. Высокий уровень твердости обеспечивается за счет высокой концентрации углерода.

Высококачественная инструментальная сталь может подвергаться дополнительной химико-термической обработке для изменения состава и перестроения кристаллической решетки, за счет чего и достигаются необычные эксплуатационные качества.

Изделия из углеродистой инструментальной стали

Твердость считается основным параметром, высокое значение которого не позволяет использовать сталь при изготовлении инструментов или деталей, подвергающихся во время эксплуатации ударам или вибрации. Эта рекомендация связана с тем, что при увеличении концентрации углерода повышается твердость, но вязкость уменьшается. Уменьшение вязкости становится причиной повышения хрупкости структуры, в результате воздействия ударной нагрузки могут появляться трещины и другие дефекты, поверхность откалываться.

Классификация по уровню твердости выглядит следующим образом:

  1. Высокий показатель вязкости и пониженная твердость характерны металлам, которые в составе имеют не более 0,4-0,7% углерода.
  2. Высокая износостойкость и твердость поверхностного слоя достигаются при насыщении структуры металла углеродом до 0,7-1,5%.

Больший показатель концентрации углерода делает металл очень хрупким, что не позволяет его использовать в качестве материала при изготовлении инструмента. Кроме этого легирующие элементы способны повысить вязкость и снизить хрупкость при условии большой концентрации углерода. В некоторых случаях проводится химическая обработка для обеспечения износостойкой поверхности и вязкого основания, за счет чего инструмент или деталь приобретает высокие эксплуатационные качества.

Маркировка

Углеродистая инструментальная сталь марки могут иметь как цифры, так и буквенные обозначения. В большинстве случаев маркировка инструментальных углеродистых сталей в самом начале имеет букву «У», которая и указывает на тип металла. Обозначение углеродистой инструментальной стали также имеет следующие особенности:

  1. Первое цифирное обозначение после буквы указывает в десятых долях количество углерода в отношении всего состава.
  2. Встречается и буква «А», идущая за цифрой, обозначающей концентрацию углерода в составе. Она указывает на то, что углеродистая инструментальная сталь марка имеет высокое качество.
  3. Для обозначения группы рассматриваемой стали может применяться буква «Р». В данном случае после этого обозначения идет буква, которая указывает на концентрацию вольфрама.
  4. Другие легирующие вещества также указываются соответствующей буквой, после которой идет цифра для обозначения концентрации.
  5. Принято считать, что у стали и рассматриваемой группы в обязательном порядке в составе есть хром, но его концентрация не более 4%. Если после соответствующего буквенного обозначения указывается цифра, то концентрация этого вещества уточняется.

Также можно встретить маркировку инструментальных углеродистых сталей начинающуюся с цифры. Примером приведем распространенные сплавы 9Х или 6ХГВ. Первая цифра также указывает на концентрацию в составе углерода, следующие буквы на легирующие элементы. Если после буквы легирующего элемента не указывается цифра, то принято считать, что их концентрация равна 1%. Кроме этого сама маркировка может начинаться с буквенных обозначений, свойственных легирующим элементам – это указывает на то, что концентрация.

Инструментальные стали: углеродистые и легированные марки

Инструментальная сталь — это материал, который на более чем на 0,7% состоит из углерода. Ее ключевыми характеристиками является твердость и прочность, их максимальные показатели достигаются при термической обработки стали. Ее преимущественно используют при изготовлении разных инструментов.

  • Преимущества и ассортимент
  • Основные виды
    • Легированные материалы и их маркировка
    • Быстрорежущие стали
  • Классификация
  • Сферы использования
  • Требования к материалу

Так называется сталь, содержащая более 0,7% углерода. Ее основными характеристиками являются прочность и твердость, которые достигают максимальных показателей после термической обработки. Основное применение такого стального материала — изготовление инструментов.

Преимущества и ассортимент

Инструментальная сталь является одним из наиболее востребованных материалов на рынке. Сплав имеет высокую твердость и невысокую стоимость. Однако имеется и недостаток у материала — его низкая износостойкость, поэтому его не применяют для производства машинных деталей и оборудования, которое подвергается постоянным нагрузкам.

Сортамент данного материала следующий:

  • горячекатаные квадраты и круги;
  • кованые полосы, круги и квадраты.

Основные виды

Такой вид материалов подразделяется на такие три основные категории:

  • инструментальные углеродистые стали;
  • легированные инструментальные стали;
  • быстрорежущие.

Все они производятся согласно установленному ГОСТу.

Углеродистые виды материала во время нагревания теряют свою прочность, соответственно, их используют для производства инструментов, которые работают на малых скоростях или при простых условиях резания, когда температура нагревания составляет не больше 200 градусов.

Преимущественно их применяют для производства:

  • напильников;
  • сверл;
  • разверток;
  • метчиков и не только.

Поскольку углеродистая инструментальная сталь обладает низкими показателями свариваемости, ее не используют при изготовлении сварных конструкций.

В зависимости от процентного соотношения содержания в материале углерода, марганца, кремния, серы и других элементов он подразделяется на такие марки, как:

  • У7;
  • У8;
  • У8Г;
  • У10 и прочие.

Легированные материалы и их маркировка

Легированные материалы в составе дополнительно содержат следующие элементы:

  • никель;
  • медь;
  • марганец и т. д.

Все они улучшают характеристики материала. Легирующие элементы должны указываться при маркировке с помощью специальных обозначений буквами. Все это позволяет заранее увидеть, из чего состоит данная инструментальная сталь. Марки материала также могут включать не только буквы, но и цифры. Цифры указывают на то, в каком количестве тот или иной элемент содержится в стали в процентном соотношении. Если при маркировке цифра не ставится, то количество элемента равно около 1 процента.

При маркировке легированной стали на первом месте стоит количество углерода, которое равно десятым долям процента. Например, марка 6ХС содержит углерод в количестве 0,6%, а также по одному проценту кремния и хрома.

Инструментальные легированные стали преимущественно используются для производства штамповых или режущих инструментов, к ним относят:

  • плашки;
  • метчики;
  • развертки;
  • сверла;
  • фрезы и не только.

Как и углеродистые стали, легированные материалы тоже непригодны для производства сварных конструкций.

Быстрорежущие стали

Маркировка быстрорежущих материалов состоит из буквы «Р», числа, указывающего на массовую долю вольфрама и букв элементов, присутствующих в составе материала. Это могут быть кобальт, молибден и другие. Далее идут цифровые значения их массовых долей. Если маркировка включает буквы «Ш», то это значит «электрошлаковый переплав».

Доля хрома в быстрорежущей стали при маркировке не указывается, также отсутствует указание массовой доли молибдена, если она не превышает отметку в один процент.

Такие виды материалов оптимально подходят для производства режущих инструментов, которые от трения нагреваются до температуры от 600 до 6500 градусов. При этом они не будут деформироваться, и терять свою твердость. Данный вид изделий хорошо поддается свариванию посредством стыковой электросварки со сталью таких марок, как 45 и 40Х.

Классификация

Все марки для производства подразделяются на следующие группы:

  • теплостойкие и вязкие — обычно это заэвтектоидные и доэвтектоидные стали, включающие хром, молибден и вольфрам. Углерод в сталях должен соответствовать низким и средним значениям;
  • высокотвердые и вязкие, а также нетеплостойкие — в сплавах содержится минимум легированных элементов, а также среднее количество углевода, отличающиеся малой прокаливаемостью;
  • Высокотвердые и теплостойкие, а также износостойкие — это быстрорежущие легированные стали с большим содержанием легированных элементов, сплавы с ледебуритной структурой, в которых содержится более 3 процентов углерода;
  • износостойкие, высокотвердые со средней теплостойкостью — материалы имеют заэвтектоидную и ледебуритную структуру, в их составе содержится примерно 2−3 процента углерода и 5−12 процентов хрома;
  • высококачественная и качественная инструментальная сталь — отличаются друг от друга по процентному соотношению присутствия в них серы и фосфора;
  • высокотвердые и нетеплостойкие — эти инструментальные стали с заэвтектоидной структурой вообще не включают в себя легированные элементы, или же они присутствуют в минимальном количестве. Уровень их твердости обеспечивается за счет большого количества углерода в составе.

Уровень твердости — очень важный параметр для рассматриваемого материала. Обычно высокотвердые стали не используют для производства инструментов, которые во время эксплуатации подвергаются ударным сильным нагрузкам. Это происходит за счет того, что эти сплавы имеют невысокую вязкость и большую хрупкость, из-за чего инструмент, которых из них сделан, может сломаться.

По уровню твердости данные стальные материалы бывают с высоким уровнем вязкости, где углерода содержится 0,4 -0,7% или же с большой износостойкостью и твердостью, где количество углевода равно 0,7−1,5%.

Отличаются стали и по степени своей прокаливаемости. По этому критерию они подразделяются на:

  • изделия с повышенной прокаливаемостью, где диаметр прокаливания составляет от 80 до 100 мм;
  • высокой — диаметр от 50 до 80 мм;
  • низкой — от 10 до 25 мм соответственно.

Сферы использования

Данный материал в промышленности имеет довольно широкий спектр применения. Они применяются при изготовлении:

  • режущих инструментов;
  • измерительных устройств;
  • литейных пресс-форм, работающих под давлением;
  • рабочих деталей штампов, которые работают по принципу горячего и холодного деформирования;
  • высокоточных изделий.

Требования к материалу

Требования к данным материалам предъявляются в зависимости от того, как именно они будут использоваться. Но есть общие требования к ним независимо от марок:

  • высокий уровень твердости;
  • высокий уровень прочности;
  • износостойкость;
  • хорошая вязкость, что особенно важно при изготовлении деталей, которые при использовании будут подвергаться ударам;
  • низкий уровень чувствительности к перегреву, процессам прилипания и приваривания к деталям, которые подвержены обработке;
  • хороший уровень обработки посредством резки металла;
  • устойчивость к появлению трещин;
  • восприимчивость к прокаливанию;
  • пластичность в горячем виде;
  • возможность шлифовки;
  • возможность противостоять обезуглероживанию.

Естественно, это не все требования. Так, марки, которые предназначаются для использования в условиях холодной деформации, дополнительно должны иметь гладкую рабочую поверхность, сохранять свою форму и размер и иметь предел текучести и упругости. А те материалы, которые должны применяться в условиях горячей деформации, должны иметь высокую теплопроводность, не допускать отпуска и быть устойчивыми к колебанию температур.

Итак, вы рассмотрели особенности инструментальной стали, выяснили, на какие виды и категории она подразделяется и для каких целей используется та или иная их марка. Подробнее информацию о них можно прочесть в других статьях, посвященных этому материалу.

Характеристики и марки инструментальных сталей

Износостойкие инструменты и детали, к прочности которых предъявляются повышенные требования, предполагают использование инструментальных сталей, имеющих ряд важных отличий от конструкционных сталей.

Круглые заготовки инструментальной стали

Сферы применения инструментальных сталей

Инструментальная сталь представляет собой сплав, содержание углерода в котором составляет не менее 0,7%. Ее структура при этом может быть доэвтектоидной, ледебуритной или заэвтектоидной. Инструментальные стали с различной структурой отличаются наличием вторичных карбидов. В сплавах с доэвтектоидной структурой вторичных карбидов нет. Между тем, в каждой из таких структур карбиды в обязательном порядке присутствуют: они образуются при эвтектоидных модификациях либо являются результатом распада мартенсита.

Схема-классификация инструментальных материалов

В современной промышленности инструментальные стали нашли широкое применение. Их используют для производства:

  • рабочих деталей штампов, работающих по принципу холодного и горячего деформирования;
  • высокоточных изделий;
  • режущего инструмента;
  • измерительных приборов;
  • литейных прессформ, которые работают под давлением.

В зависимости от области применения инструментальных сталей к ним предъявляются определенные требования. Однако существуют общие для всех марок критерии соответствия:

  • достаточный уровень вязкости (особенно актуальна эта характеристика для деталей, подвергающихся в ходе эксплуатации ударам);
  • высокая прочность;
  • износостойкость;
  • высокий уровень твердости.

Марки сплавов, предназначенных для применения в условиях холодной деформации, должны ко всему прочему обладать гладкой рабочей частью, способностью сохранять размеры и форму, а также отличаться пределом текучести и упругости. А инструментальная сталь, пригодная для работы в условиях горячей деформации, должна обладать высокой теплопроводностью, противостоять отпуску и быть устойчивой к температурным колебаниям. Особым требованиям должны соответствовать и марки сталей, используемых для производства режущего инструмента.

Требования к инструментальным сталям

Ко всем углеродистым инструментальным сталям предъявляются такие требования, как:

  • хорошая обрабатываемость методом резки металла;
  • низкая чувствительность к перегреву;
  • низкая восприимчивость к процессам прилипания и приваривания к обрабатываемым деталям;
  • хорошая шлифуемость;
  • восприимчивость к прокаливанию;
  • пластичность в горячем состоянии;
  • способность противостоять обезуглероживанию;
  • устойчивость к образованию трещин.

Виды инструментальных сталей

Все марки сталей для производства инструментов подразделяют на 5 основных групп.

Теплостойкие и вязкие

Как правило, это за- и доэвтектоидные стали, которые содержат в своем составе молибден, вольфрам и хром. Содержание углерода в таких легированных инструментальных сталях соответствует средним и низким значениям.

Высокотвердые и вязкие, нетеплостойкие

Такие сплавы отличает низкое содержание легированных элементов и среднее — углерода. Они также характеризуются невысокой прокаливаемостью.

Высокотвердые, теплостойкие и износостойкие

К таким маркам относятся быстрорежущие легированные стали (содержание легирующих элементов в них очень велико), а также сплавы с ледебуритной структурой, содержащие в своем составе более 3% углерода.

Износостойкие, высокотвердые и средней теплостойкости

Это стали с заэвтектоидной и ледебуритной структурой, в состав которых входит 2-3% углерода и от 5 до 12% хрома.

Высокотвердые и нетеплостойкие

Состав таких инструментальных сталей с заэвтектоидной структурой либо вообще не содержит легированных элементов, либо содержит их в незначительных количествах. Уровень твердости таких сплавов обеспечивается большим количеством углерода в их составе.

Классификация инструментальной стали в виде схемы

Важным параметром инструментальных сталей является уровень их твердости. Как правило, высокотвердые стали нежелательно применять для производства инструмента, который в процессе эксплуатации подвергается ударным нагрузкам. Объясняется это тем, что такие сплавы обладают невысокой вязкостью и значительной хрупкостью, что может привести к поломке инструмента, который из них изготовлен.

По уровню твердости можно выделить две категории инструментальных сталей:

  • с высоким уровнем вязкости (содержание углерода в пределах 0,4-0,7%);
  • с высокой износостойкостью и твердостью (углерода в них содержится больше: 0,7-1,5%).

Деталь гидромолота из высокотвердой стали

Классифицируют марки сталей и по степени их прокаливаемости. По данному критерию различают легированные стали с повышенной (возможный диаметр прокаливания 80-100 мм), высокой (50-80 мм) и низкой (10-25 мм) прокаливаемостью.

О маркировке инструментальных сталей

Для определения вида инструментальной стали требуется знание маркировки, которая включает в себя как буквенные, так и цифровые обозначения. Разобраться в этом несложно. Очень часто в маркировке сплавов встречается буква «У». Она означает, что перед вами углеродистая сталь. Цифры, идущие следом за такой буквой, говорят о содержании углерода в сплаве, исчисляемом в десятых долях процента. Встречается в маркировке углеродистых инструментальных сталей и буква «А», указывающая на то, что сплав относится к высококачественным.

Маркировка инструментальной стали (на примере углеродистой) с указанием содержания дополнительных элементов

Большую категорию инструментальных сталей составляют быстрорежущие сплавы, которые обозначаются буквой «Р». После этой буквы следуют цифры, по которым можно определить содержание основного легирующего элемента для сталей данной категории — вольфрама.

Содержание остальных элементов в составе быстрорежущих легированных сталей (молибдена, ванадия и кобальта) определяется по цифрам, следующим за соответствующими буквами в их маркировке — «М», «Ф» и «К». В состав быстрорежущих сплавов в обязательном порядке входит и хром, но его количество определяют по умолчанию — не более 4%.

Очень часто маркировка инструментальных сталей начинается с цифры (к примеру, 9ХС, 9Х, 6ХГВ), которая указывает на содержание (в десятых долях) в их составе углерода, если оно не превышает 1%. В том случае, если углерода в составе сплава содержится около 1%, то цифра в начале их маркировки не ставится вообще. На содержание остальных элементов (в целых долях) указывают цифры, которые стоят в маркировке за буквами, обозначающими соответствующий легирующий элемент.

Закалка и отпуск углеродистых инструментальных сталей

В ГОСТе 1435 оговаривается как состав углеродистых сталей, так и их основные характеристики. Содержание углерода в таких сплавах (что можно определить по их марке) составляет от 0,65 до 1,35%. Для того чтобы получить оптимальную структуру и требуемую твердость, перед началом производства инструмента эти сплавы подвергают отжигу. При этом для инструментальных сталей с заэфтектоидной структурой выполняется отжиг сферодизирующего типа. Проводимая по такой технологии термообработка приводит к появлению цементита зернистой формы. А получить зерна требуемого размера позволяет скорость охлаждения, которую можно легко регулировать.

Производственный процесс закалки стали

После того, как инструмент будет изготовлен, инструментальная сталь подвергается закалке и последующему отпуску. Это дает возможность получить материал требуемой твердости. Регулировать твердость готового инструмента также достаточно легко, это достигается путем выбора определенной температуры для проведения операции отпуска.

Так, для инструментов, подвергающихся в процессе эксплуатации систематическим ударным нагрузкам, оптимальной является твердость от 56 до 58 HRC, которую получают, проводя отпуск при температуре 290 градусов Цельсия. Самые строгие требования предъявляют к твердости плашек, граверных приспособлений, напильников (62-64 единицы по шкале HRC). Достигается она при помощи выполнения отпуска при температуре от 150 до 200 градусов Цельсия.

Закалка увеличивает твердость углеродистых сталей по той причине, что именно с ее помощью удается получить оптимальную структуру сплава железа и углерода. Варианты такой структуры:

  • карбиды с мартенситом;
  • только мартенсит.

Инструментальная штамповая сталь

Изделия из металла, получаемые методом деформирования, могут обрабатываться в нагретом и холодном состоянии. Соответственно, и штампы, с помощью которых обрабатываются такие детали, бывают холодно- и горячедеформированными. Естественно, что для производства штампов разных типов требуется использование различных марок инструментальной стали.

Так, для штампов холоднодеформированного типа и небольшой толщины (до 25 мм) применяют углеродистые стали У10, У11 и У12. Твердость сплавов данных марок находится в пределах от 57 до 59 единиц по HRC, они отличаются достаточной вязкостью, хорошим уровнем сопротивления деформациям пластического характера, способностью противостоять износу в процессе эксплуатации. Для более габаритного инструмента (толщина больше 25 мм), испытывающего в процессе эксплуатации более значительные нагрузки, применяют стали с повышенным содержанием хрома (Х9, Х, Х6ВФ).

Инструментальная штамповая сталь на складе

Изделия, регулярно испытывающие в процессе своей эксплуатации ударные нагрузки, должны отличаться высокой вязкостью (например, 4ХС4 и 5ХНМ). Чтобы обеспечить выполнение этого требования, в производстве используют легированные стали, состав которых обогащен специальными элементами, а уровень содержания углерода значительно снижен. Кроме того, необходима специальная термообработка таких инструментальных сталей.

Горячедеформированные штампы в процессе своей эксплуатации подвергаются не только значительным механическим, но и термическим нагрузкам. Естественно, что к инструментальным сталям для производства этих штампов (например, 5ХНМ и 4ХСМФ) предъявляются особые требования, такие как:

  • повышенная устойчивость к трещинообразованию в условиях постоянного нагрева и охлаждения инструмента;
  • высокий уровень теплопроводности и прокаливаемости;
  • устойчивость к образованию окалины.

20. Углеродистые инструментальные стали, маркировка и область применения.

Инструментальные углеродистые стали, выпускаемые по ГОСТ 1435-74, имеют следующие марки: У7, У7А, У8, У8А, У9, У9А, У10, У10А, У11, У11А, У12, У12А, У13, У13А. Буква «У» обозначает углеродистая, а циф­ра после буквы — десятые доли процента углерода (на­пример, сталь марки У10 содержит в среднем 1,0% С). Буква А обозначает высокое качество стали (Sи Р 1 %), называется легированной. В качестве легирующих специальных элементов исполь­зуют Сг,Ni,W, Мо, Тi, V, Со и др.

Легированные стали обозначают по буквенно-цифровой системе; леги­рующие элементы — буквами: никель — Н, хром — X, вольфрам — В, ванадий — Ф, молибден — М, титан — Т, кобальт — К, кремний — С, марганец- Г, алюминий — Ю, медь — Д, ниобий — Б, бор — Р.

Леги­рованные стали классифицируют по назначению, хими­ческому составу и структуре.

По назначению легированные стали делят на три группы.

1) конструкционные стали (хромистые, марганцовистые);

2) инструментальные стали (хромистые, быстрорежущие);

3) стали с особыми свойствами (коррозионно — стойкие, жаростойкие).

В зависимости от общего содержания легирующих элементов различают низколегированные (с общим со­держанием легирующих элементов не выше 3 %), среднелегированные (с общим содержанием легирующих эле­ментов 3. 10 %) и высоколегированные (с общим содер­жанием легирующих элементов более 10%) стали.

В зависимости от химического состава и свойств легированная конструкционная сталь делится на сле­дующие категории: качественная, высококачествен­ная — А.

По структуре после охлаждения на воздухе легиро­ванные стали подразделяют на три основных класса: перлитный, мартенситный и аустенитный.

Общее правило расшифровки марок легированных сталей:

1. Если марка легированной стали начинается с двузначной цифры, то сталь конструкционная и углерода в ней содержится в сотых долях процента (60ХСГ – 0,60% С).

2. Если марка легированной стали начинается с однозначной цифры, то сталь инструментальная и углерода в ней содержится в десятых долях процента (9ХГС – 0,60% С).

3. Если марка легированной стали начинается с буквы, то сталь инструментальная и углерода в ней содержится до 1 % (Х8ГА – до 1% С).

4. Если в марке легированной стали после легирующего элемента стоит цифра, то она обозначает его процентное содержание(Х8ГА – хрома 8 %).

5. Если в марке легированной стали после легирующего элемента отсутствует цифра, то этого легирующего элемента в данной марке до 1,5 % (Х8ГА – марганца до 1,5 %).

6. Если в конце марки легированной стали стоит буква А, то сталь высококачественная, а если отсутствует – то качественная (Х8ГА – сталь высококачественная, 60ХСГ — качественная).

7. Если в марке легированной стали какого-то одного легирующего элемента 10 и более процентов, то сталь специальная (ШХ15 – хрома 15% — сталь специальная).

8. Если марка легированной стали начинается с буквы Р, то сталь быстрорежущая (от латинского rapid– «скорость»). Цифра после буквы Р обозначает процентное содержание вольфрама. В любом другом месте марки буква Р обозначает бор (Р6М5 – быстрорежущая сталь, 20ХГР – содержание бора до 1,5 %).

Последовательность расшифровки марки стали:

1. Определить сталь по химическому составу (углеродистая или легированная).

2. Определить сталь по назначению (конструкционная, инструментальная или специальная).

3. Определить сталь по качеству (обыкновенного качества, качественная или высококачественная).

4. Расшифровать шифр марки стали (что обозначают буквы и цифры).

Примеры расшифровки:

4Х2В5ФМ— 1.Легированная; 2. Инструментальная; 3. Качественная; 4. 4 – С=0,4 %; Х2 –Cr= 2 %; В5 –W= 5%; Ф –V= 1,5 % ; М – Мо = 1,5 %; остальное –Fe.

50ХФА— 1.Легированная; 2. Конструкционная; 3. Высококачественная; 4. 50 – С = 0,50 %; Х –Cr= 1,5 %; Ф –V= 1,5 % ; А – высококачественная; остальное –Fe.

Р6М5— 1.Легированная; 2. Инструментальная; 3. Качественная; 4. С = до 1 %; Р – быстрорежущая;W= 6%; М – Мо = 5 %; остальное –Fe.

Сталь 45— 1.Углеродистая; 2. Конструкционная; 3. Качественная; 4. 45 — С = 0,45 %; остальное –Fe.

60Г— 1.Углеродистая; 2. Конструкционная; 3. Качественная; 4. С = 0,60 %; Г – повышенное содержание Мn(0,8 – 1,2 % ); остальное –Fe.

А40Г — 1.Углеродистая; 2. Конструкционная; 3. Качественная; 4. А – автоматная; 40 — С = 0,40 %; Г – повышенное содержание Мn(0,8 – 1,2 % ); остальное –Fe.

ВСт3Гпс3— 1.Углеродистая; 2. Конструкционная; 3. Обыкновенного качества; 4. В – группа стали (с гарантированными механическими свойствами и химическим составом); Ст – сталь; 3 – условный номер марки; Г – повышенное содержание Мn; пс – полуспокойный разлив; 3 – категория марки стали; остальное –Fe.

20Х13— 1.Легированная; 2. Специальная; 3. Качественная; 4. 20 – С=0,20 %; Х13 –Cr= 13 %; остальное –Fe.

Характеристики,классификация и маркировка инструментальных сталей

Инструментальная сталь отличается тем, что в ней содержится более чем 0.7% углерода. Главное её отличие состоит в повышенной прочности и твёрдости, потому она используется в производстве разнообразных рабочих инструментов.

За счёт своей невысокой цены и высокой твёрдости сплава, данный материал наиболее востребован. Однако он имеет определённый недостаток – это низкий уровень устойчивости к износу. Потому сплав не используется при производстве автомобильных деталей и оборудования, которое испытывает постоянную нагрузку.

  1. Виды металла и маркировка
  2. Углеродистая
  3. Легированная
  4. Быстрорежущая
  5. Обработка инструментальных сталей

Виды металла и маркировка

Разделение проходит на качественные и высококачественные виды. Отличие заключается в том, что в качественной стали имеется 0.03% серы и 0.035% фосфора, а в высококачественной – 0.02% серы и 0.03% фосфора.

По ГОСТу допускается выпуск нижеперечисленных:

  • У7.
  • У8.
  • У8Г.
  • У9.
  • Н10.
  • У11.
  • У12.
  • У13.
  • У7А.
  • У8А.
  • У8ГА.
  • У9АЮ
  • У10А.
  • У11А.
  • У12А.
  • У13А.

Среди качественных инструментальных, чаще всего присутствуют те, в которых нет литеры «А», потому как это имеет отношение к высококачественной марке. Буква «У» обозначает содержание углерода. Идущее за ней число обозначает десятые доли процента углерода, содержащегося в данной марке. Когда после чисел расположена буква «Г», это значит то, что сплав содержит марганец.

Происходит классификация по трём видам:

  • Углеродистая.
  • Легированная.
  • Быстрорежущая (сюда же входит штамповая).

Углеродистая

Углеродистая инструментальная сталь теряет свою прочность при нагревании, потому их применяют при изготовлении инструментов, которые работают на низкой скорости, на простом условии резания. Это связано с тем, чтобы во время трения температура не превышала 200 °С. Обычно его применяют при создании свёрла, напильника, метчика, развёртки. Потому как её показатель свариваемости низкий, то для сварных конструкций её не используют.

Легированная

Легированный тип инструментальной стали содержит в себе немного другой состав. В него включены добавки марганца, никеля, меди и прочих элементов. За счёт них улучшается характеристика металла. Здесь будет обязательной маркировка, так как она требует указания наличия элементов литерами:

  • Когда добавлен марганец – Г.
  • Хром – Х.
  • Ванадий – Ф.
  • Кремний – С.
  • Вольфрам – В.
  • Медь – Д.
  • Никель – Н.
  • Титан – Т.
  • Молибден – М.

После обозначения элемента могут располагаться цифры. Цифры обозначают вместимость указанного элемента в %. Когда цифра отсутствует – количество будет около 1%. Когда обозначается легированная инструментальная сталь, то вначале указано количествово углерода, которое выражено в десятых долях процента. Для примера, если взять маркировку 6ХС, то углерода будет 0.6 и 1% хрома и кремния. Главная сфера применения – это режущий и штамповый инструмент. Это также не совсем подходящий вариант для сварных конструкций.

Быстрорежущая

Быстрорежущая сталь маркируется вначале литерой «Р». Далее идёт число, которое обозначает массовую вольфрамовую долю. После этого идут буквенные обозначения элементов, содержащиеся в сплаве:

  • Молибден – М.
  • Ванадий – Ф.
  • Кобальт – К.
  • Азот – А.

Далее идут цифровые обозначения массовой доли. В некоторых случаях в маркировке может бить литера «Ш», которая обозначает «электрошлаковый переплав». При маркировке доля хрома не обозначается. Тоже и с массовой долей молибдена, когда он не превышает 1%.

Данный вид хорошо подходит для режущего инструмента, который испытывает сильный нагрев при трении (от 600 – 6500 °С). Он не теряет твёрдость и не подвержен деформации. Помимо этого, быстрорежущая инструментальная сталь имеет хорошие возможности для сваривания стыковой электросваркой с марками 45 и 40Х.

Обработка инструментальных сталей

Среди методов обработки существуют следующие:

  • Закалка
  • Сварка.
  • Отпуск.

Закалка

Закалка – это термообработка инструментальных сталей, во время которой материал нагревается до оптимальной температуры, выдерживается на температуре, после чего мгновенно охлаждается для получения неравновесной структуры. После закалки у изделия увеличивается твёрдость, прочность и понижается пластичность металла. Главным параметрам качества, которым обладает закалка инструментальной стали, считается температура нагревания и быстрота охлаждения.

Сварка

Всегда сварка инструментальной стали считалась одним из наиболее сложных видов. Для этого используются электроды, которые предназначаются для сваривания инструментальной стали. Инструментальная сталь значительно отличается от других типов сталей за счёт того, что в её составе содержится большое кол-во углерода. Стоит помнить, что для сваривания не подходит марка, которая не способна выдерживать высокую температуру. То бишь углеродистая не подходит для сваривания. Лучше всего для этого подойдут легированные металлы.

Отпуск

Следующим этапом после закалки является отпуск. Это требуется, чтобы снять напряжение хрупкого мартенсита, который образуется при закалке, а также, чтобы уменьшить содержание остаточного аустенита. Большая часть инструментальной стали имеет довольно обширную область температур отпуска. Рекомендуют для использования наиболее высокую температуру отпуска, так как это придаст инструменту прочность. Материал должен остывать до температуры 65 градусов, после чего до комнатной температуры между и после отпусков. Есть также многократный отпуск, который используется для большинства сложнолегированных инструментальных сталей.

Штамповка

Чтобы обработать инструментальную сталь используют штамповку. Есть 2 вида штамповки:

  • В которых деформация металла происходит в холодном состоянии.
  • В которых деформация металла происходит в горячем состоянии.

Когда штамповка происходит в горячем состоянии, металл, на который воздействуют сближающиеся половинки штампа, начинает деформироваться и заполнять внутреннюю полость штампа. При штамповке улучшается качество поверхности и точность формы.

Каждый этап должен быть проведён только специалистами своего дела. Это важно, так как нарушение технологий производства не гарантирует заявленным качествам изделия, потому важно тщательно выбирать поставщика.

Инструментальная сталь, в некотором роде является удобным и незаменимым материалом, потому её использование в мире является повсеместным. Это связано с тем, что твердость инструментальной стали подходит своими качествами для производства множества рабочих инструментов.

Инструментальные стали – зачем они нужны

Для производства износостойких и твердых инструментов используются инструментальные стали, имеющие значительные отличия от конструкционных сталей.

1 Инструментальные стали и сплавы – общие сведения

Под инструментальными подразумевают такие стали, в составе которых содержится не менее 0,7 процента углерода. В большинстве случаев они характеризуются доэвтектоидной, ледебуритной либо заэвтектоидной структурой.

Между собой они отличаются наличием вторичных карбидов (их нет в доэвтектоидных сплавах). При этом во всех структурах обязательно присутствуют карбиды, образующиеся при эвтектоидных модификациях или в процессе распада мартенсита.
Инструментальная сталь может предназначаться для:

  • холодного и горячего деформирования (штамповочная);
  • изделий высокой точности;
  • режущего инструмента;
  • измерительных изделий;
  • литейных прессформ, используемых под давлением.

В связи с этим любые марки инструментальной стали обязаны иметь достаточную вязкость (если они применяются для ударных изделий), высокую прочность, хорошую износостойкость и твердость. Кроме того, было установлено, что разные виды инструментальных сталей должны характеризоваться и рядом особых свойств, что позволяет изготавливать инструменты различных категорий.

Например, сплавы для холодной деформации должны дополнительно обладать гладкой поверхностью, высокой формо- и размероустойчивостью, а также пределом упругости и текучести при сжатии (так называемая «прочность на сжатие»), сплавы для деформации в горячих условиях – повышенной теплопроводностью, стойкостью к термическим колебаниям и против отпуска, теплостойкостью. Аналогичным требованиям должны соответствовать и инструментальные стали для режущего инструмента.

Также существует и несколько специальных технологически характеристик, коим обязаны соответствовать описываемые нами сплавы:

  • хорошая обрабатываемость резкой;
  • нечувствительность к перегреву;
  • малая восприимчивость к прилипанию и привариванию;
  • шлифуемость (шлифование металла важно для качественной эксплуатации инструмента, изготавливаемого из него);
  • хорошая прокаливаемость;
  • в горячем состоянии – пластичность;
  • невосприимчивость к обезуглероживанию;
  • малая склонность к образованию трещин на металле.

2 Классификация инструментальных сталей

Все инструментальные сплавы, как понятно из вышеизложенных фактов, имеют собственные характеристики и свойства. Именно по ним они и классифицируются. Выделяют 5 групп сталей для производства инструмента:

  • вязкие и теплостойкие: к ним относят за- и доэвтектоидные сплавы, легированные молибденом, вольфрамом, хромом, со средним либо малым содержанием углерода;
  • нетеплостойкие, высокотвердые и вязкие: содержание углерода – среднее, малопрокаливаемые, низколегированные;
  • теплостойкие, высокотвердые и износостойкие: быстрорежущие высоколегированные, а также ледебуритные сплавы (углерода в них обычно много – более 3%);
  • среднетеплостойкие, твердые и износостойкие: от 2 до 3 процентов углерода, хрома – от 5 до 12 процентов, к таковым относят заэвтектоидные и ледебуритные составы;
  • нетеплостойкие и твердые: малолегированные, нелегированные, и заэвтектоидные стали с большим количеством углерода.

Если сплав имеет высокую твердость, его нежелательно использовать для инструмента, эксплуатируемого при ударных нагрузках, так как такие составы не считаются вязкими. По уровню твердости можно выделить два вида сталей:

  • повышенновязкие (углерода в них 0,4–0,7%);
  • износостойкие и высокотвердые (содержание углерода – 0,7–1,5%).

Прокаливаемость также имеет огромное значение для классификации инструментальных сталей. Легированные составы описываются высокой (критический диаметр – 80–100 мм) и повышенной (50–80 мм) прокаливаемостью, углеродистые сплавы с вольфрамом – низкой (10–25 мм).

3 Маркировка инструментальных сталей

Разные виды инструментальных сплавов имеют различную маркировку. Разобраться в ней совсем несложно. Углеродистые стали обозначаются литерой «У», после которой стоит какая-либо цифра (8, 7, 10), определяющая в десятых долях процента содержание в сплаве углерода. Если после цифры стоит литера «А», это означает, что перед нами высококачественная продукция (наиболее распространена в этом плане инструментальная сталь марки У10А).

Маркировка быстрорежущих сплавов начинается с литеры «Р». Затем указывается содержание вольфрама в стали (он является основным легирующим компонентом быстрорежущих композиций) и содержание молибдена, ванадия, кобальта (цифра после букв «М», «Ф» и «К»). В маркировку не включается количество хрома, так как он присутствует в быстрорежущих сплавах в малых объемах (не более 4%).

Цифры в инструментальных легированных сталях типа 9ХС, Х, 6ХГВ, 9Х дают представление о том, сколько в сплаве имеется углерода (при условии, что его не более 1%) в десятых долях процента. Цифры нет вовсе, когда количество углерода примерно составляет 1%. А легирующие добавки обозначаются соответствующей буквой и цифрой, которая показывает их содержание (здесь уже имеются в виду целые проценты) в стали.

4 Углеродистая инструментальная сталь – ГОСТ 1435

Согласно данному Государственному стандарту под такими сталями понимают составы с содержанием углерода от 0,65 до 1,35 процента. Они обычно проходят отжиг до начала производства режущих инструментов, что позволяет сформировать благоприятную структуру составов и добиться оптимального показателя твердости материала. Отжиг сфероидизирующего вида проводится для заэвтектоидных сплавов. Это дает возможность получить зернистую форму вторичного цементита. А конкретной величины зерна несложно добиться, изменяя скорость охлаждения.

Финальным этапом термообработки является закалка инструментальной стали, после чего она подвергается отпуску, температура которого зависит от желаемой твердости инструмента. Так, для ударных изделий (молотки, зубила) температура отпуска равняется примерно 290 °С (в этом случае они имеют твердость от 56 до 58 HRC и необходимый показатель вязкости), для плашек, граверных приспособлений и напильников – не более 200 °С (от 150), что обеспечивает наибольшую твердость изделий на уровне 62–64 HRC.

Закаленные стали могут иметь один из двух вариантов структуры:

  • карбиды и мартенсит;
  • просто мартенсит.

Отметим отдельно и то, что неполная закалка стали предусмотрена для заэвтектоидных сплавов, а полная – для доэвтектоидных.

5 Сталь инструментальная штамповая

Штампы могут быть холодно- и горячедеформированными. Для холоднодеформированных небольших (не более 25 мм) штампов обычно используют стали марок У11, У10 и У12, которые характеризуются достаточной вязкостью (ударной) и стойкостью против износа, требуемым уровнем сопротивления деформациям пластического характера и HRC от 57 до 59.

Для инструмента с размерами выше 25 мм рекомендуется применять сталь Х9 или Х, реже – Х6ВФ. А вот для ударных изделий подходят сплавы 5ХНМ и 4ХС4. Они описываются очень высокой вязкостью, которая обеспечивается добавкой специальных легирующих компонентов, уменьшением содержания углерода и особым режимом термообработки.

Стали, идущие на горячедеформированные штампы (4ХСМФ, 5ХНМ и др.), должны, кроме того, обладать устойчивостью к трещинообразованию (при неоднократном цикле нагрева и последующего их охлаждения), повышенным уровнем прокаливаемости и теплопроводности, а также стойкости против возникновения окалины.

Оцените статью