Микрометрические инструменты их типы и назначения

Микрометрические инструменты Микрометрические инструменты широко применяют для конт­роля наружных и внутренних размеров, глубин пазов и отверстий. Измерение

Микрометрические инструменты их типы и назначения

Микрометрические инструменты

Микрометрические инструменты широко применяют для конт­роля наружных и внутренних размеров, глубин пазов и отверстий.

Измерение микрометрическими инструментами осуществляется методами непосредственной оценки, т.е. результаты измерений непосредственно считываются со шкалы инструмента. Принцип действия этих инструментов основан на использовании пары винт-гайка, преобразующей вращательное движение винта в поступа­тельное движение его торца (пятки).

К группе микрометрических инструментов относятся микромет­ры для измерения наружных размеров, микрометрические нутро­меры для измерения диаметров отверстий и ширины пазов, микро­метрические глубиномеры для измерения глубины отверстий и па­зов и высоты уступов.

Микрометрические инструменты независимо от их конструкции состоят из корпуса и микрометрической головки, являющейся ос­новной частью микрометрических инструментов. В зависимости от пределов измеряемых размеров микрометрические головки могут иметь различную конструкцию.

На рисунке 15,а показана микрометрическая головка, которую ус­танавливают на микрометрические инструменты с верхним пределом измерения до 100 мм. Микрометрический винт 1 проходит че­рез гладкое направляющее отверстие стебля 2 и ввинчивается в раз­резную микрогайку 4. Микрогайку 4, имеющую три радиальных прореза, стягивают гайкой 5. Регулирование среднего диаметра резьбы микрогайки 4 для устранения зазора в винтовой паре осуществляют гайкой 5.

На микрометрическом винте 7 при помощи накидного колпачка 6 закреплен барабан 3. Палец 9, помещенный в глухое отверстие колпачка, прижимается пружиной 10 к зубча­той поверхности трещотки 7. Трещотка крепится на колпачке при помощи винта 8. При вращении трещотка передает микровинту через палец вращательный момент, обеспечивающий измеритель­ное усилие 5-9 Н. Если измерительное усилие больше, то трещот­ка проворачивается с характерными щелчками. Винт 12 ввинчива­ется во втулку 77 и фиксирует микровинт в требуемом положении.

а – с верхним пределом измерений до 100 мм: 1 – микрометрический винт; 2 – стебель; 3 – барабан; 4 – микрогайка; 5 – гайка стяжная; 6 – колпачок накидной; 7 – трещотка; 8 – винт крепления трещотки; 9 – палец; 10 – пружина; 11 — втулка; 12 – винт; б – с верхним пределом измерений свыше 100 мм: 1 — микрометрический винт; 2 – гайка стопорная; 3 втулка разрезная; 4 – барабан; 5 — колпачок установочный; 6 – палец; 7 – трещотка

Рисунок 15 – Микрометрические головки

Микрометрические головки для микрометрических инструмен­тов с пределами измерений свыше 100 мм имеют несколько иное устройство (рисунок 15, б). Микровинт 7 стопорится гайкой 2, кото­рая зажимает разрезную втулку 3. Барабан 4 закрепляется устано­вочным колпачком 5 на конусной поверхности микровинта. Палец 6 прижимается к торцевой зубчатой поверхности трещотки 7.

Показания со шкалы микрометра считывают следующим обра­зом (рисунок 16):

• по основной шкале, расположенной на стебле микрометриче­ской головки, считывает целые миллиметры и половины милли­метров, размер определяют по штриху основной шкалы, видному из-под скоса барабана;

• по круговой шкале барабана определяют сотые доли милли­метра по штриху шкалы барабана, совпадающему с продольным штрихом основной шкалы;

• к показаниям, считанным по основной шкале, прибавляют по­казания, считанные со шкалы барабана. Полученная сумма и бу­дет являться размером проверяемой детали.

Рисунок 16 – Отсчет показаний по шкале микрометра

Микрометрические инструменты основаны на применении мик­рометрических винтовых пар. Их конструкции весьма разнообраз­ны. Рассмотрим только микрометры общего применения.

Гладкие микрометры МК с пределом измерений 25 мм предна­значены для измерения наружных размеров деталей (рисунок 17, а). К основным деталям и узлам гладкого микрометра относятся ско­ба 7, пятка 2, микровинт 4, стопор 5 винта, стебель 6, барабан 7 и трещотка 8.

а – устройство: 1 – скоба; 2 – пятка; 3 – установочная мера; 4 – микровинт; 5 – стопор; 6 – стебель; 7 – барабан; 8 – трещотка; б – сменная пятка: 1, 2 – гайка; 3 – пятка; в – регулируемая пятка: 1 – фиксатор, 2 – пятка

Рисунок 17 – Гладкий микрометр МК

На стебле 6 вдоль продольного штриха нанесена основная шка­ла. Цена деления основной шкалы 0,5 мм, а предел ее измерений -25 мм. Для удобства отсчета четные штрихи шкалы, имеющие целые значения размера, отложены снизу продольного штриха. На коническом срезе барабана 7 нанесено 50 делений круговой шкалы с ценой деления 0,01 мм.

При измерениях изделия помещают без перекоса между пяткой и микровинтом. Вращая барабан за трещотку до тех пор, пока она не начнет проворачиваться, плотно прижимают измерительные поверхности к поверхностям детали.

Пределы измерения микрометров зависят от размера скобы и со­ставляют 0-25; 25-50; 275-300; 300-400; 400-500; 500-600 мм. Микрометры для размеров более 300 мм оснащены смен­ными (рисунок 17, б) или регулируемыми (рисунок 17, в) пятками, обес­печивающими диапазон измерений 100 мм. Регулируемые пятки 2 крепятся в заданном положении фиксаторами 7 (рисунок 17, в), а сменные пятки 3 — гайками 7 и 2 (рисунок 17, б). Перед измерени­ями микрометры устанавливают в исходное (нулевое) положение, при котором пятка и микровинт прижаты друг к другу или к по­верхности установочных мер 3 (рисунок 17, а) под действием силы, ограниченной трещоткой.

При измерении микрометром необходимо придерживаться сле­дующих основных правил:

• убедиться в правильности выбора микрометра в зависимости от размера детали (пределы измерения указаны на скобе микро­метра);

• проверить плавность вращения микрометрического винта;

• убедиться в точности установки микрометра на ноль (при пол­ном, без просвета, соприкосновении пятки скобы и торца микро­метрического винта нулевые штрихи на стебле и конической части барабана должны совпадать, при этом прощелкивает механизм трещотки);

• при измерении прочно удерживать микрометр за скобу, плот­но, без перекосов, сопрягая измерительные поверхности микрометpa с поверхностями детали, размер между которыми измеряется, вращать микрометрический винт до прощелкивания механизма трещотки.

Основанием микрометрического глубиномера (рисунок 18) явля­ется поперечина 7, в которую запрессован стебель 4 с основной шка­лой и гайкой микрометрического винта. В гайку ввинчивается микрометрический винт, на котором установлен барабан. Враще­ние винта осуществляется при помощи трещотки или фрикцион­ной передачи (передачи вращательного движения за счет трения двух сопрягаемых поверхностей), которая проворачивается вхо­лостую, когда измерительное усилие достигает определенной ве­личины.

5 – стопорный винт;

6 – сменный стержень;

7 – проверяемая деталь

Рисунок 18 – Микрометрический глубиномер

При вращении барабана 2 при помощи трещотки 3 вместе с ним вращается и микрометрический винт, ввинчиваясь в микрометри­ческую гайку. В торце микровинта выполнено отверстие, в кото­рое вставляют сменные измерительные стержни 6. Микрометри­ческие глубиномеры обеспечивают диапазоны измерений 0-25; 25-50; 50-75; 75-100. Изменение диапазона измерений микро­метрического глубиномера осуществляется за счет замены сменных стержней 6.

Измерения микрометрическим глубиномером необходимо вы­полнять в следующей последовательности:

• установить в отверстие микрометрического винта измеритель­ный стержень, длина которого должна соответствовать глубине от­верстия;

• установить микрометрический глубиномер на ноль;

• установить основание поперечины на базовую поверхность, относительно которой будут произ­водиться измерения, и слегка прите­реть;

• вращая микрометрический винт, переместить измерительный стержень вниз до упора;

• зафиксировать положение микро­метрического винта при помощи сто­порного винта 5 и считать размер.

Микрометрический нутромер (рисунок 19) состоит из двух основ­ных частей — микрометрической головки (рисунок 19, а) и удлините­ля (рисунок 19, б).

Микрометрическая головка была подробно опи­сана ранее.

Микрометрические нутромеры выпускают в виде набора мик­рометрических головок с наконечниками и комплектом удлините­лей. Установка микрометрического нутромера на ноль осуществ­ляется с помощью специальной мини-скобы, входящей в комплект нутромера (рисунок 19, в).

Пределы измерений при использовании микрометрических го­ловок без удлинителей составляют 50-63 и 75-88 мм, а с удли­нителями — 50-75; 75-175; 75-600 мм.

При измерении нутромером необходимо:

• вводить микрометрический нутромер в отверстие так, чтобы его ось находилась в диаметральной плоскости этого отверстия и была перпендикулярна к его стенкам;

• извлекать нутромер из отверстия только при застопоренном положении микрометрического винта.

Микрометрические инструменты

Микрометрические инструменты предназначены для измерения абсолютным методом охватывающих (отверстий), охватываемых (валов) и ступенчатых (глубин, пазов) размеров изделий. Цена деления инструментов обычно равна 0,01 мм. Кроме традиционных, выпускаются микрометрические инструменты (и штанген-инструменты) более высокой точности с цифровым отсчетом, в которых шкалы (нониусы) дополнены или заменены на табло на жидких кристаллах; предусмотрено подключение печатающего устройства для регистрации данных измерений.

В измерительных инструментах используется принцип винтовой пары: микрометрический винт — гайка, которая преобразовывает вращательное движение винта в поступательное. Подобные микрометрические пары применяются также в некоторых приборах: инструментальных микроскопах, проекторах и др.

По конструкции и назначению инструменты разделяются на несколько групп: гладкие микрометры, микрометрические нутромеры, микрометрические глубиномеры и специальные микрометры — листовые, трубные, резьбовые, зубомерные и др.

Гладкий микрометр (тип МК) предназначен для измерения наружных размеров деталей (рис. 99). Микрометр состоит (см. рис. 99, а) из скобы 1, в которую запрессованы пятка 2 с измерительной поверхностью на торце и стебель 4. На стебле имеются внутренняя микрометрическая резьба (разрезная гайка 7), относительно которой перемещается микрометрический винт 5, и наружная коническая резьба. При навинчивании гайки 8 разрезная гайка 7 немного сжимается за счет прорезей в конической части. Таким образом, регулируется (для компенсации износа) зазор в микрометрической паре.

Микровинт имеет резьбу с шагом Р=0,5 мм и заканчивается точно доведенной измерительной поверхностью 3, строго параллельной измерительной поверхности пятки 2. Винт 5 и барабан 6 жестко связаны с помощью колпачка 9, в котором находится храповой механизм трещотки 10, предназначенной для стабилизации измерительного усилия.

Микровинт в заданном положении закрепляется стопорным кольцом или винтом 11.

Каждый микрометрический инструмент имеет две шкалы: одна нанесена на наружной поверхности стебля 4 (см. рис. 99), другая — на скошенной части барабана 6. На стебле сделана продольная риска, выше которой нанесены штрихи с миллиметровыми делениями, а ниже — штрихи, делящие каждый миллиметр между верхними штрихами пополам (см. рис. 99, б). На барабане 6 (см. рис. 99) по окружности нанесено п = 50 равноудаленных штрихов. По делениям, нанесенным на стебле, перемещение барабана, а следовательно, и микрометрического винта можно контролировать с точностью 0,5 мм.

При шаге резьбы Р = 0,5 мм за один оборот микровинта барабан (вместе с микровинтом) переместится на 0,5 мм. При повороте же барабана на одно деление барабан и винт сместятся на 1/50 шага резьбы. Таким образом, цена деления инструмента с = р/п = 0,5/50 = 0,01 мм.

На рис. 99, б отсчет равен 12,71 мм. Нулевой штрих барабана «прошел» 12,5 делений стебля; с риской стебля совпадает 21 штрих барабана. Так как одно деление шкалы барабана соответствует изменению размера (перемещению микровинта) на 0,1 мм, то 21 штрих и торец барабана указывает, что измеряемый размер равен 12,5 + 0,21 = 12,71 мм.

Читайте также  Инструмент для разделки оптического кабеля

Гладкие микрометры МК выпускаются с пределами измерения 0-25 мм, 25-50 мм, 50-75 мм и т. д. до 275-300 мм, а далее — 300-400 мм, 400-500 мм, 500-600 мм. Измерительное усилие — 5-9 Н (для инструмента с пределами измерения 0-100 мм).

Микрометрические нутромеры предназначены для измерения внутренних размеров от 50 до 10 000 мм (пределы измерения 50-75 мм, 75-175 мм, 75-600 мм, 150-1250 мм, 800-2500 мм, 1250-4000 мм, 2500-6000 мм, 4000-10 000 мм). По своему устройству нутромеры сходны с гладкими микрометрами. Нутромер (рис. 100) состоит из микровинта 2, соединенного с барабаном 2, гильзы 3 со стопором 4 и пятки 5.

В пятке находится одна сферическая измерительная поверхность, в наконечнике 6 — другая. Рабочий ход винта обычно составляет 13 мм, поэтому для увеличения пределов измерения устанавливают удлинители (поставляются в комплекте с нутромером), которые после снятия колпачка с пяткой 5 (см. рис. 100) навинчивают на гильзу.

Гладкие микрометры при измерениях размеров свыше 25 мм и нутромеры проверяют на нуль с помощью установочных мер 12 (см. рис. 99, а), которые также входят в комплект.

Гладкие микрометры при измерениях размеров свыше 25 мм и нутромеры проверяют на нуль с помощью установочных мер 12 (см. рис. 99, а), которые также входят в комплект.

Микрометрические глубиномеры предназначены для измерения глубин отверстий , уступов, пазов и т. д. до 200 мм. Глубиномер (рис. 101) состоит из траверсы 1 с измерительной поверхностью и стебля 2, запрессованного в траверсу. Внутри стебля перемещается микрометрический винт, скрепленный с барабаном 3. В отверстие микрометрического винта устанавливаются сменные измерительные стержни 4. Установка глубиномера на нуль производится по установочным мерам (втулкам в комплекте).

Специальные микрометры предназначены для измерений параметров специальных профилей (резьбовых, зубчатых), измерений толщин листов и стенок труб.

Резьбовой микрометр (тип МВМ) используют для измерения среднего (с?2) диаметра метрических, дюймовых и трубных резьб. Он отличается от гладкого микрометра тем,

что вместо постоянных плоских измерительных поверхностей имеет сменные вставки 1 и 2 (рис. 102).

Вставка 1 (см. рис. 102) с конусом, угол которого соответствует углу профиля резьбы, вставляется в отверстие микрометрического винта. Вставка 2 с прорезью устанавливается в пятку микрометра. Каждая пара вставок предназначена для определенного диапазона шагов резьбы. Установочная мера 3 служит для установки микрометра на нуль.

Листовые микрометры (тип МЛ) предназначены для измерения толщины листов. Конструкция их аналогична гладким микрометрам; они имеют удлиненную скобу для измерений на некотором удалении от края листа и циферблат со стрелочным отсчетом.

Трубные микрометры (тип МТ) используют для измерений толщин стенок труб.

Микрометры типа МЗ служат для измерения длины общей нормали зубчатых колес.

Микрометр

Содержание: Скрыть Открыть

  • Устройство и назначение
  • Принцип действия
  • Типы микрометров
  • Микрометры цифровые
  • ГОСТы

Микрометр – это универсальный измерительный прибор для высокоточного (с погрешностью от 2 до 50 мкм) определения линейного размера детали. Измерение может быть произведено абсолютным или относительным контактным методом с погрешностью достаточной для точной сборки узлов и станочного производства.

Устройство и применение микрометров

Как универсальный измерительный инструмент применение микрометра возможно в любой области, где необходимо определение линейных размеров с точностью от 2 мкм. Это, в первую очередь, механическая обработка деталей, точная сборка узлов и механизмов, настройка работы промышленного оборудования и мн. другое.

Устройство микрометра достаточно простое, в конструкцию инструмента входит всего три основных элемента:

  • Рама в виде полукруга оснащенная опорной стойкой (1) для фиксации измеряемой детали.
  • Ручка, оснащенная трещоткой (6), неподвижным стеблем (4) со шкалой и измерительным барабаном (5).
  • Винт (2) с неподвижной гайкой (3) для измерения линейных величин.

Замер с помощью микрометра выполняется посредством перемещения винта в неподвижной гайке. По углу оборота винта и определяется перемещение и рассчитывается линейный размер. Количество полных оборотов указано на стебле, доли – по круговой шкале на барабане. Инструмент также оснащен устройством кольцевой гайкой для фиксации.

Для обеспечения точности измерений передвижение микрометрического винта не должно превышать 25 мм. Поэтому микрометры выпускаются в пределах 0–25, 25–50 мм и т. д., до 300 мм, с дальнейшим шагом 100 мм. — 300–400, 400–500 и т. д.

Принцип действия микрометров

Для примера возьмём обычные механические гладкие микрометры, получившие наиболее широкое применение. Данный инструмент позволяет производить замер абсолютным и относительным способом. При абсолютном замере измеряемая деталь размещается между опорной стойкой и передвижным винтом. Полученный размер можно определить непосредственно по шкале. При относительном измерении определяется размер рядом распложенных предметов и затем вычисляется нужный параметр.

Сам замер производится в следующей последовательности:

  • Проверить точность прибора. Необходимо закрутить винт и проверить – совпадает ли нулевая отметка на шкале барабана с горизонтальным штрихом на стебле.
  • Если предел измерений более 25 мм, то для проверки необходимо использовать эталонные меры.
  • При несовпадении меток необходимо отрегулировать стебель специальным ключом (входит в комплект).
  • Перед началом измерения винт выкручивается до размера немного более размера детали.
  • Измеряемая деталь размещается между винтом и неподвижным упором.
  • Винт необходимо зажать с помощью трещотки до характерного звука срабатывания – трещотка начинает проворачиваться, закрутка микровинта останавливается после 3 щелчков.
  • Определяем показание по трем шкалам. Первые две расположены на стебле и одна на барабане. По штрихам в верхней части шкалы определяется количество полных миллиметров. К ним прибавляем, если возможно, половину второй шкалы, т. е. ещё 0,5 мм.
  • В завершение прибавляем значение со шкалы барабана в соответствие с ценой деления шкалы, например 0,01 мм.
  • Окончательный итог определяется суммированием всех трех показаний.
  • Для получения максимально точного результата рекомендуется проведение нескольких замеров с расчетом среднего значения.

Типы микрометров

Для различных объектов измерения выпускаются следующие типы микрометров:

  • Микрометры листовые – для замера толщины листов.
  • Гладкие микрометры – для определения размера предметов с гладкой поверхностью.
  • Микрометры рычажные – оснащены рычажно-зубчатой головкой для замера изделий со сложной конфигурацией.
  • Трубные микрометры – для определения размеров стен труб.
  • Проволочные и резьбомерные – для замера тонких изделий.
  • Цифровые микрометры – оснащены электронной системой определения размера и цифровой шкалой.

Микрометры цифровые

Вместе с механическими, цифровые микрометры пользуются большой популярностью благодаря удобству и точности измерения, а также возможностям электронных приборов:

  • Производить замер с точностью до 1 мкм при погрешности до 0,1 мкм.
  • Встроенная калибровка.
  • Удобное цифровое табло для максимально быстрого и точного получения результата.
  • Выбор систем расчета.
  • Вывод информации на ПК и мн. другое в зависимости от модели.

Государственные стандарты

Основной стандарт регулирующий технические условия производства инструмента – ГОСТ 6507-90

Микрометр. Виды и устройство. Работа и применение. Особенности

Микрометр – это точный измерительный инструмент, предназначенный для работы с деталями мелких размеров. Он обладает высокой точностью, поэтому с его помощью можно получить линейные параметры измеряемого объекта с допуском от 2 мкм. Благодаря столь малой погрешности инструмент и получил свое название. Он намного более точный, чем штангенциркуль, а тем более чем обычная линейка.

Как устроен микрометр

Существует несколько популярных конструкции микрометров, которые являются усовершенствованной базовой моделью этого инструмента подогнанной под определенные узкие цели.

В простом исполнении микрометр состоит из следующих элементов:

В основе конструкции лежит металлическая скоба, параметры которой ограничивают возможность изменения. На одном ее конце имеется металлическая пятка, а на втором прикрепляется механизм в виде винта. Он отрегулирован таким способом, что расстояние между его кончиком и пяткой скобы отображается на цифровой шкале инструмента. Вкрутив винт до момента прижатия измеряемой заготовки, можно получить точное отображение ее ширины. После этого остается только посмотреть на шкалу. Данный прибор является контактным. Он не применяется для измерения мягких материалов, которые при прикасании начинают сжиматься.

Чтобы полученный результат не сбивался, пока не будет записан, на микрометре предусматривается фиксатор. При его нажатии исключается вероятность случайного выкручивания винтов и сдвига указателя на цифровой шкале даже на несколько долей миллиметра.

Сфера использования
Данное оборудование является довольно распространенным в различных отраслях. Его профессионально используют:
  • Токари.
  • Литейщики.
  • Фрезеровщики.
  • Лабораторные сотрудники.
  • Моделисты.
  • Ювелиры.

Это оборудование позволяет получить точные линейные данные, но оно не столь универсально, как тот же самый штангенциркуль. Для выполнения определенных задач данный инструмент является незаменимым, поскольку именно он позволяет добиться практически лабораторной точности, что не сможет ни один другой ручной прибор измерения.

Виды микрометров

Сфера использования данного оборудования довольно обширна, поэтому его конструкция была адаптирована под определенные цели. Это позволяет обеспечить максимально удобные и точные измерения. Существуют более 20 конструктивно отличающихся между собой микрометров, из которых многие являются очень редкими и практически не применяются в быту.

Среди популярных микрометров можно отметить:
  • Гладкий.
  • Листовой.
  • Для горячего металлопроката.
  • Для глубокого измерения.
  • Трубный.
  • Проволочный.
  • С малыми губками.
  • Универсальный.
  • Канавочный.
  • Цифровой.
Гладкий микрометр

Самый распространенный в использовании. Он применяется для снятия наружных показателей деталей и заготовок. Именно такой инструмент чаще всего можно встретить в продаже. Подобные модели можно использовать практически в любых целях, кроме тех случаев, когда нужно измерить внутренние показатели заготовок, поскольку для такого устройство не предназначено.

Листовые микрометры

Имеют на пятке и на самом винте круглые тарелки, что увеличивает площадь контакта с измеряемой заготовкой. Это позволяет провести ее предварительную деформацию, чтобы выровнять и измерять точную толщину. Таким инструментом обычно измеряют параметры листового проката, металлических лент и кованых в кузнице заготовок.

Хотя с теоретической точки зрения снять параметры можно и с помощью обычного гладкого микрометра, но на самом деле это не так. Зачастую прокат имеет неровности, поэтому можно установить пятку и винт на вмятину или наоборот на утолщение. Применение широких тарелок позволяет увеличить площадь и избежать контакта с подобными областями, которые могут приводить к получению неточных данных.

Микрометр для горячего металлопроката

Применяется для работы с раскаленными заготовками. C его помощью можно быстро и эффективно измерить толщину железных элементов при их производстве, не ожидая пока они остынут. Именно с помощью этого инструмента удается контролировать момент, когда необходимо остановить прокат металла и забрать готовую заготовку нужных параметров.

Микрометры для глубокого измерения

Имеют очень вытянутую скобу, которая позволяет накинуть инструмент на заготовку и проверить толщину в удаленном от края месте. Это особенно важно если измеряемая деталь является неравномерной по периметру. С помощью таких устройств можно узнать точную толщину детали, в которой проведено несквозное сверление отверстия или зенкование.

Микрометры трубного типа

Предназначены исключения для измерения толщины стенок трубок. Они имеют особенную конструкцию, поэтому их невозможно спутать с устройствами других типов. Визуально определить трубные микрометры несложно. Они имеют обрезанную скобу, на конце которой пятка заменяет срезанную скобу. Такая пятка вставляется внутрь трубки, которая измеряется, после чего винт поджимается и можно получить точные данные о диаметре стенки.

Читайте также  Линейка это прибор или инструмент

Данное оборудование позволяет снимать параметры даже с очень тонких труб, главное чтобы в них могла войти пятка. Именно это и отличает трубные инструменты от гладких типов. С помощью обычного микрометра можно снимать данные только с довольно толстых труб, внутренний диаметр которых позволяет вставлять в них часть скобы вместе с выходящей в сторону пяткой.

Проволочный микрометр

Является одной из самой компактной разновидностью базовой модели. Он не имеет столь ярко выраженной скобы как обычные инструменты. Внешне его можно принять за обычный металлический прут. Подобный инструмент используется для замера диаметра металлической проволоки и прутиков. Он имеет малый диапазон хода, но этого более чем достаточно для тех измерений, для которых он предназначен. Отсутствие объемной скобы позволяет носить инструмент в компактном чемоданчике с ключами и отвертками. Подобные микрометры занимают места не больше, чем плоскогубцы.

Микрометр с малыми губками

Предназначен для снятия параметров на поверхности металла после осуществления в нем проточки или сверления. Главная особенность таких инструментов заключается в том, что пятка и винт сделаны очень тонкими. Благодаря этому их можно вставлять в тонкие отверстия. По конструктивным особенностям подобные модели ничем не отличаются от обычных, кроме утонченных элементов.

Универсальные микрометры

Имеют съемные наконечники. Именно такие устройства выбирают в том случае, если нужно проводить измерение, различных по свойствам, заготовок и деталей. Съемные наконечники позволяют адаптировать инструмент под требуемые условия работы. Стоит отметить, что на более дешевых микрометрах данного типа наблюдается одна проблема. При недостаточно сильном зажатии наконечника возможен зазор, влияющий на точность. В том случае если очень точные данные не нужны и погрешность в пол миллиметра не имеет особого значения, то и универсальные модели будут вполне удобными. Приборы более дорогого ценового сегмента зачастую выполнены более качественно, и проблема болтающихся наконечников сведена к минимуму благодаря подгонке всех элементов инструмента.

Канавочные микрометры

Предназначены для замера габаритов в труднодоступных местах заготовок. Главной особенностью этого инструмента является полное отсутствие скобы. Внешне они напоминают проволочные модели, но оснащаются специальными тарелками, которые выступают в роли губок, захватывающих детали. С помощью данного оборудования можно зажать выступающие части заготовок губками и измерить их диаметр. Подобные приборы требуют аккуратного обращения, поскольку установленные на их конца тарелочки могут деформироваться при сильном ударе, что случается при падении.

Цифровой микрометр

Является одним из самых удобных устройств, поскольку он оснащается электронным дисплеем. С помощью такого оборудования можно намного удобнее и быстрее проводить замеры габаритов деталей заготовок. Питание данного прибора осуществляется благодаря установленной батарейке, такой как используется в наручных часах. По точности они ничем не уступают механическим, хотя и не являются такими долговечными. Электронный дисплей можно разбить, если не относиться к инструменту с достаточной осторожностью.

Более дорогие электронные модели имеют множество кнопок настройки, а также большую встроенную память, поэтому они сохраняют получаемые раннее данные и даже показывают время проведения обмеров. Подобные микрометры будут особенно удобны для промышленного применения, когда необходимо проводить множество измерений в сжатый период времени.

Существует еще как минимум десяток различных типов микрометров. Они являются очень узкоспециализированными, и нельзя сказать, что незаменимыми. Операции, которые они выполняют, можно сделать и другими типами микрометров, что может быть не так и удобно, но точность измерения от этого никак не пострадает. Все микрометры выпускаются в соответствии с требованиями ГОСТ. Для большинства моделей данного инструмента предусматривается отдельный государственный стандарт определяющий точность измерения. Микрометр желательно носить в специальном тубусе, чтобы предотвратить набивания пыли на винт, что убережет его от заклинивания.

Устройство микрометра и разновидности измерительных приборов

Измерительный прибор высокой степени точности, позволяющий определять линейные размеры физических тел, называется микрометр. Многогранность принципа работы микрометра способствует высокой точности производимых измерений, а простота в работе с устройством делает его доступным даже для начинающих мастеров.

Описание и действие

Прибор на современном рынке представлен множеством типов и моделей, которые по принципу действия и правилам эксплуатации не имеют существенных различий. Исключением являются лишь электронные и лазерные приборы.

Название инструмента указывает размерную величину, в пределах которой прибор способен с достоверной точностью определить размер детали. Один микрон — очень мелкий параметр; на практике чаще пользуются точностью в 50 микрон — это величина, значение которой может повлиять на результат сборочных работ либо настройку детали.

Приемы измерения микрометром — абсолютный и относительный. При первом варианте разъем прибора прилагается непосредственно к поверхности детали. Зажимы для крепления выставляются в соответствии с геометрией измеряемой детали. Показания в микронах снимаются согласно измерительным шкалам.

Относительный метод основан на данных, снятых при измерении предметов, которые находятся в непосредственной близости к искомому объекту обмера. В дальнейшем с их помощью косвенным математическим путем устанавливаются искомые параметры этого предмета.

Устройство прибора

Винт и гайка — вот самое простое описание механической конструкции микрометра. Сложными и тщательно выверенными являются шкалы, предназначенные для снятия измерений.

Стандартная модель измерительного прибора состоит:

  1. Скоба, имеющая достаточную жесткость. Даже мелкие деформации этой детали способны повлиять на точность измерений. Дефекты скобы свидетельствуют о непригодности измерительного устройства к работе;
  2. Пятка — обычно реализована как элемент части корпуса прибора. Существуют также виды микрометры со съемной пяткой. Такая модификация устройства предназначена для измерений в диапазоне от 500 до 800 мм;
  3. Микрометрический винт (шпиндель) вращается за счет передвижения трещотки;
  4. Устройство стопорное реализовано в виде винтового зажима, служит фиксатором микрометрического винта при снятии показаний измерительных величин или настройке микрометра;
  5. Стебель имеет основную и дополнительную измерительные шкалы для определения размерных величин детали. Основная показывает целые значения (миллиметр), а дополнительная — половинные;
  6. Барабан рассчитан для измерения десятых и сотых доли мм и служит указателем шкалы стебля;
  7. Трещотка регулирует напряжение, при котором контактируют прибор и предмет измерения, а также способствует вращению микрометрического винта;
  8. Эталон — деталь дополнительно входит в комплект устройства и необходима для настройки точности и проверки работоспособности микрометра.

Проверка и калибровка

Сразу после приобретения микрометр рекомендуется диагностировать на наличие дефекта в работе. При сбое шкалы ее можно настроить с помощью ключа, входящего в комплект устройства.

Проверка точности прибора производится смыканием плоскостей измерения. В максимальном упорном положении винта в противоположную плоскость на индикаторе электрического микрометра появится цифра «0».

В приборе с механической конструкцией стебля должен принять положение, в котором будет практический полностью закрыт барабаном. Нулевое значение на барабане должно совпасть с продольным штрихом стебля, а его скошенный край — с нулевой отметкой верхней шкалы.

До того как приступить к проверке, устройство и деталь необходимо выдержать в одинаковых температурных условиях не менее трех часов. При желании для проверки можно использовать эталон.

Процесс измерения и показания

В начале работы необходимо расположить измерительную деталь между пяткой прибора и микрометрическим винтом. Начать вращение барабана с учетом максимальной близости шпинделя и измеряемого предмета.

При измерениях микрометр находится в левой руке. Во избежание нагрева от температуры тела и искажения результатов держать прибор следует за изолированную часть скобы.

Размеренно и не спеша до соприкосновения с измеряемой поверхностью подводится шпиндель устройства. Крутить его следует по направлению против часовой стрелки относительно торца с нарезкой пока деталь не зайдет в зазор торцов. Далее, необходимо по часовой стрелке довести вращение шпинделя до упора, придерживая в процессе нарезки барабан.

При достижении упора вращение начнет сопровождаться треском. Вращение микрометрического винта следует прекратить и можно приступать к снятию показаний. Освобождается деталь из зажима обратным вращением шпинделя. Точный размер замеряется на барабане с помощью шкалы нониуса.

Показания прибора. При работе по снятию величин измерений механическим прибором требуется некоторая сноровка. Начинаем снимать показания с более крупного разряда цифр и оканчиваем мелким.

Для начала обратим внимание на шкалу стебля на неподвижной части рукоятки. Она содержит две шкалы, которые для комфортного восприятия расположены в позиции остановки края барабана, зафиксируем значение деления нижней шкалы (допустим, 8). Оно находится в зоне видимости. Так определяется величина первого цифрового показания.

В случае когда край барабана сравнялся с делением на верхней шкале, то после запятой необходимо поставить цифру 5, если деление скрыто, тогда цифру 0. После рассматривается шкала на барабане, где находятся сотые доли миллиметра, их необходимо прибавить к десятым долям.

Допустим, верхняя шкала не показала половинчатого деления, соответственно, измерительная величина равна 8,0 мм. Поскольку на барабане с горизонтальным штрихом выпало значение 12, следовательно, 8,0 + 0,12 = 8,12 мм. В случае видимости штриха на верхней шкале стебля 8,5 + 0,12 = 8,62 мм.

Основные разновидности

В зависимости от длины передвижного шпинделя (винта) микрометры классифицируют по типоразмерам. Приборостроительная промышленность производит устройства для измерения размера деталей в диапазонах:

  1. от 0 до 25 мм,
  2. от 25 до 50 мм,
  3. от 50 до 75 мм,
  4. до 500−600 мм.

Ряд измерительных приборов дополнительно укомплектован установочными концевыми мерами для возможности выставления устройства в позицию «на ноль».

Микрометры имеют различие по видам (по ГОСТ 6507–90 ) в зависимости от назначения и конструктивной принадлежности (ручные и настольные).

Широко распространены в использовании следующие виды измерительных микрометров:

  1. гладкие — предназначены мерить наружные размеры;
  2. листовые — для толщины лент и листов, оснащены стрелочным циферблатом;
  3. трубные — для толщины трубных стенок;
  4. проволочные — для толщины проволоки;
  5. микрометрические головки — для измерения перемещения;
  6. зубомерные — измеряют нормали зубчатых цилиндрических колес, что важно для контроля качества при их производстве.

Помимо отображенных в ГОСТ, используются и другие виды инструмента:

  1. рычажные микрометры — принцип действия прибора основан на механизме измерения линейных величин с помощью метода сравнений и оценок (модель МРИ);
  2. микрометры призматические — для измерения внешнего диаметра инструмента со множеством лезвий (серия МТИ, МПИ, МСИ);
  3. нутромеры микрометрические — для измерения внутренних параметров различных деталей (НМ, НМИ);
  4. канавочные;
  5. резьбомерные;
  6. универсальные и прочие.

Электронный инструмент

Для скоростных обмеров предназначены приборы с наличием электронной «цифровой» индикации, значение произведенных измерений у которых отображается на отдельном табло (к примеру, микрометр модифицированный МК — МКЦ).

Современные микрометры с цифровой индикацией имеют ряд определенных достоинств:

  1. Внутренняя электронная начинка в составе устройства и цифрового табло индикации значительно облегчает работу, связанную с измерением, и экономит время, расходуемое на считывание результатов. Табло индикатора электронного микрометра отображает все полученные измерительные данные, при этом проблемы со снятием данных, как правило, отсутствуют.
  2. Ощутимое преимущество цифровых устройств (ГОСТ 6507−90) составляет цена деления шкалы 0,001 мм и малые значения предела допустимой погрешности.
  3. Модели электронных микрометров способствуют осуществлению не только абсолютных, но и относительных измерений.
  4. Существует возможность из какого-либо положения в диапазоне измерений выставить прибор в нулевое значение. Это свойство полезно при техническом контроле, разбраковке изделий, сложных обмерах.
  5. Разбраковку и контроль качества деталей реально ускорить, если в память микрометра заложить допустимые граничные значения измерительных величин. Современные прогрессивные модели микрометров обладают такими функциональными возможностями.
  6. Устройства последних модификаций имеют разъемы, позволяющие отображать статистические данные измерений при помощи компьютера. Эта функция полезна при анализе серии измерений и для ведения отчетной документации испытаний.
  7. Универсальность цифрового прибора при пользовании также является плюсом, она дает возможность использовать как метрическую, так и английскую систему измерений.
Читайте также  Инструмент для ламината металлическая скоба

Ощутимым недостатком цифровых измерительных устройств является ненадежность в работе. Всякая цифровая техника нуждается в особо аккуратном обиходе. Механическая модель микрометра при возможном падении не особо пострадает, хотя это отразится на способности работать в дальнейшем. При цифровом аналоге в таком случае существует риск немедленного прекращения работы, ремонтных затрат или даже замены прибора.

Недорогой цифровой микрометр неизвестного производства способен допускать погрешности результата измерений. Такие приборы фактически не соответствуют ГОСТу, впрочем, нередко цифровые модели, изготовленные согласно стандарту, имеют частые сбои в работе. Инструмент требует замены по прошествии гарантийного срока эксплуатации.

Лазерный микрометр

Лазерный микрометр — новейший универсальный измерительный инструмент. Главное отличие прибора от механических аналогов — это потребность в автономном источнике питания.

Микрометр служит для бесконтактных измерений линейных величин, определения зазоров, ширины, толщины, внутренних диаметров в технологических объектах. Посредством лазерного устройства измеряют уровни сыпучих веществ, отслеживают положение объекта.

По причине высокой себестоимости лазерный манометр пока не пользуется большим спросом в частных кругах.

Как один из самых высокоточных приборов, прибор нашел свое применение во многих сферах современной промышленности и строительстве. Электронное обеспечение делает такое устройство довольно хрупким и дорогостоящим и выдвигает повышенные требования к его бережной эксплуатации.

Originally posted 2018-03-28 15:34:19.

Микрометрические инструменты их типы и назначения

§ 97. Микрометрические инструменты

Микрометр — прибор для измерения линейных размеров контактным способом. Изготовляют следующие типы микрометров:

МК — микрометры гладкие для измерения наружных размеров;

МЛ — микрометры листовые с циферблатом для измерения толщины листов и лент;

МТ — микрометры трубные для измерения толщины стенок труб;

М3 — микрометры зубомерные для измерения зубчатых колес.

Микрометры типа МК выпускают с пределами: 0-5; 0-10; 0-15; 0-25; 25-50 50-75; 75-100; 100-125; 125-150; 150-175; 175-200; 200-225; 225-250 250-275; 275-300; 300-400; 400-500 500 — 600 мм.

Микрометры с верхним пределом измерений 50 мм и более снабжают установочными мерами (цилиндрические стержни, имеющие точную форму).

Микрометр (рис. 378, а) имеет скобу 7 с пяткой 2 на одном конце, втулку-стебель 5 на другом, внутрь которой ввернут микрометрический винт 3. Торцы пятки и микрометрического винта являются измерительными поверхностями. На наружной поверхности стебля проведена продольная линия, ниже которой нанесены миллиметровые деления, а выше ее — полумиллиметровые деления. Винт 3 жестко связан с барабаном 6, на конической части барабана нанесена шкала (нониус) с 50 делениями.

На головке микрометрического винта имеется устройство (трещотка) 7, обеспечивающее постоянное измерительное усилие. Трещотка соединена с винтом так, что при увеличении измерительного усилия свыше 900 гс она не вращает винт, а проворачивается. Для фиксирования полученного размера детали служит стопор 4. Шаг микрометрического винта 3 равен 0,5 мм (рис. 378, б). Так как на скосе барабан 6 по окружности разделен на 50 равных частей (рис. 378, в), то при повороте на одно деление барабана микрометрический винт 3, соединенный с барабаном 6, перемещается вдоль оси на 1/50 шага, т. е. 0,5 мм : 50 = 0,01 мм.

Перед измерением проверяют нулевое положение микрометра. При проверке микрометра с пределами измерения 0 — 25 мм протирают замшей измерительные плоскости пятки и микрометрического винта, затем медленно сводят их до соприкосновения. Для этого медленно вращают трещотку 7, пока она не начнет проворачиваться, издавая характерный треск. Медленное вращение трещотки необходимо потому, что скорость вращения винта влияет на величину измерительного усилия.

При проверке микрометров с пределами измерения 25 — 50, 50 — 75 мм и т. д. между измерительными плоскостями микрометрического винта и пятки помещают либо установочную меру 8, либо мерительную плитку, соответствующую нижнему пределу измерения, т. е. 25, 50, 75 и т. д. Измерительные плоскости сближаются так же, как и у микрометров с пределом измерения 0 — 25 мм.


Рис. 378. Микрометр: а — устройство, б — микрометрический винт, в — барабан; 1 — скоба, 2 — пятка, 3 — винт, 4 — стопор, 5 — стебель, 6 — барабан, 7 — трещотка, 8 — установочные меры

Если при проверке окажется, что нулевое деление барабана 6 не совпадет с продольным штрихом на стебле 5, еще раз выполняют установку на нуль в таком порядке: закрепляют микровинт стопором; разъединяют барабан с микровинтом; устанавливают барабан и закрепляют его; проверяют нулевое положение.

Перекос измерительных поверхностей микрометрического винта при зажатии стопором не должен превышать у микрометров с пределами измерения до 100 мм — 1 мкм, а для микрометров с пределами измерения более 100 мм — 2 мкм.

Перед измерением проверяемую деталь закрепляют в тисках или в приспособлении, протирают измерительные поверхности и устанавливают микрометр на размер несколько больше проверяемого, затем микрометр (рис. 379, а, в) берут левой рукой за скобу 7, а измеряемую деталь 3 помещают между пяткой 2 и торцом микрометрического винта 4. Плавно вращая трещотку, прижимают торцом микрометрического винта 4 деталь 3 к пятке 2 до тех пор, пока трещотка 5 не начнет провертываться и пощелкивать.

Установка микрометра на нуль показана на рис. 379, 6.

При измерении диаметра цилиндрической детали линия измерения должна быть перпендикулярна образующей и проходить через центр (рис. 379, в).

При чтении показаний микрометра целые миллиметры отсчитывают по краю скоса барабана по нижней шкале, полу миллиметры — по числу делений верхней шкалы стебля. Сотые доли миллиметра определяют на конической части барабана по порядковому номеру (не считая нулевого) штриха барабана, совпадающего с продольным штрихом стебля.


Рис. 379. Приемы использования микрометра: а — измерение деталей в вертикальном и горизонтальном положениях, б — установка микрометра на нуль, в — установка микрометра на деталь


Рис. 380. Чтение показаний микрометра: а — положение глаз, б — примеры отсчета


Рис. 381. Микрометрический глубиномер: а — устройство, б — примеры отсчета; 1 — стебель, 2 — основание, 3 — сменные стержни


Рис. 382. Микрометрический нутромер (штихмасс): а — устройство, б — удлинительный стержень, в — проверка нулевого положения; 1 — измерительные поверхности, 2 — стебель, 3 — стопор, 4 — микрометрический винт, 5 — барабан, 6 — гайка

При чтении показаний микрометр держат прямо перед глазами (рис. 380, а). Примеры отсчета показаны на рис. 380, 6.

Микрометрический глубиномер с точностью измерения 0,01 мм (рис. 381, а) применяют для измерения глубины пазов, отверстий и высоты уступов до 100 мм. Глубиномеры изготовляют со сменными измерительными стержнями для измерений в пределах 0 — 25; 25 — 50; 50 — 75 и 75 — 100 мм. Изменение пределов измерения достигается присоединением сменных стержней. Шаг резьбы микрометрического винта 7 (стебель) — 0,5 мм. Изменение пределов измерений достигается присоединением сменных измерительных стержней 3.

Перед измерением проверяют нулевое положение глубиномера. При измерении левой рукой прижимают основание 2 глубиномера к верхней поверхности детали, а правой при помощи трещотки в конце хода доводят измерительный стержень до соприкосновения с другой поверхностью детали. Затем стопорят микрометрический винт и читают размер.

При чтении показаний надо иметь в виду, что при ввинчивании микрометрического винта глубиномера показания не уменьшаются, как у микрометра, а увеличиваются. Поэтому цифры на шкале стебля и барабана указаны в обратном порядке: на стебле цифры увеличиваются справа налево, а на барабане — по часовой стрелке (рис. 381, б).

Микрометрический нутромер (штихмасс) с ценой деления 0,01 мм (рис. 382, а) предназначен для измерения внутренних размеров от 50 до 10 000 мм. Микрометрические нутромеры изготовляют с пределами измерений: 50-75; 75-175; 75-600; 150 — 1250; 800-2500; 1250-4000; 2500-6000; 4000-10 000 мм. Нутромеры с пределами измерений 1250 — 4000 мм и более поставляют с двумя головками: микрометрической и микрометрической с индикатором.

Шаг резьбы микрометрической винтовой пары нутромера равен 0,5 мм. Микрометрический нутромер имеет стебель 2 (рис. 382, а), в отверстие которого вставлен микрометрический винт 4. Концы стебля и микрометрический винт имеют сферические измерительные поверхности 7.

На винт насажен барабан 5 с установочной гайкой 6. В установленном положении микровинт закрепляют стопором 3.

Для измерения отверстий размером более 63 мм используют удлинительные стержни (рис. 382, б) с размерами: 25; 50; 100; 150; 200 и 600 мм. Без удлинителей можно измерять размеры от 50 до 63 мм. Перед навинчиванием удлинителя со стебля свинчивают гайку 6, после присоединения удлинителя ее навинчивают на резьбовой конец последнего стержня.

Перед измерением микрометрическую головку (рис. 382,д) устанавливают по установочной мере (скобе) на исходный размер, проверяют нулевое положение, затем выбирают наименьшее количество соответствующих удлинителей.

Измерение нутромером отверстий производят по двум взаимно перпендикулярным диаметрам. Левой рукой прижимают измерительный наконечник к одной поверхности, а правой рукой вращают барабан до легкого соприкосновения с другой поверхностью (рис. 383,а,б). Отыскав наибольший размер, стопорят микровинт и читают размер.

Правильное положение микрометрического нутромера находят покачиванием головки нутромера при легком контактировании измерительных поверхностей с деталью.


Рис. 283. Приемы измерения: а — цилиндрических отверстий, без применения и с применением удлинителей, б — параллельности деталей, в, г — примеры отсчета

Для отсчета показаний на стебле нутромера имеется шкала длиной 13 мм с полу миллиметровыми и миллиметровыми делениями. Вторая шкала нанесена на конической части барабана, она имеет 50 делений по окружности. По этой шкале и отсчитывают сотые доли миллиметра.

Показания микрометрического нутромера читают так: к предельному размеру микрометрической головки (75 мм) прибавляют показания на стебле (в данном случае 3 мм), а затем показания на скосе барабана (0,21 мм). Следовательно, показание будет 75 мм + 3 мм + 0,21 мм = 78,21 мм (рис. 383, я).

При чтении показаний с удлинителями к показанию микрометрической головки прибавляют длину удлинителей, например: к микрометрической головке присоединены удлинители 200 и 100 мм. Показание (рис. 383,г) будет:

Оцените статью
Добавить комментарий