Угломерные инструменты древних вавилонян сектанты и октанты

С зарождением торговли возникла потребность ориентироваться не только во времени, но и в пространстве, точнее говоря, на поверхности Земли (ориентировались за Солнцем, Луной, а со временем и

Угломерные инструменты древних вавилонян сектанты и октанты

1.4. Угломерные инструменты.

С зарождением торговли возникла потребность ориентироваться не только во времени, но и в пространстве, точнее говоря, на поверхности Земли (ориентировались за Солнцем, Луной, а со временем и за яркими звездами). Для этого начали применять угломерные инструменты . Но первой задачей для угломерных инструментов стало уточнение календаря, поскольку погрешность его составляла около 5 дней в год (Египетский календарь (360 дней в году) – применялся для регистрации разливов Нила), поэтому измерять время начали с помощью гномона – одного из самых старых инструментов.

Гномон — вертикальный стержень, который отбрасывает тень (от Солнца) на горизонтальную плоскость. Если измерить длину гномона (L) и длину отбрасываемой тени (l) то можно определить угловую высоту Солнца, а за высотой – время. Эти вычисления можно сделать, используя современную формулу: tg h = L / l . Также с помощью гномона, следя за длиной отбрасываемой тени, можно довольно точно определить моменты, когда она становится наиболее длинной или наиболее короткой, то есть, иначе говоря, зафиксировать дни солнцестояний. За этими данными легко вычислить длину года, а отсюда – и даты солнцестояний. Таким образом, не смотря на простую конструкцию, гномон разрешает измерять очень важные в астрономии величины. Эти измерения будут тем точнее, чем выше гномон, поскольку конец тени не бывает резко очерченным и всегда имеет полутень. Древние наблюдатели, чтобы лишиться полутени, закрепляли сверху вертикальную пластинку с маленьким круглым отверстием. Еще за тысячу лет до начала нашей эры в Египте был построен гномон в виде обелиска высотой в 117 римских футов. Во время царствования императора Августа гномон перевезли в Рим, установили на Марсовом поле и определяли с помощью его момент полудня. В Пекинской обсерватории в XIII в. н.э. был установлен гномон высотой 13 м, а известный узбекский астроном Улугбек (XV в.) пользовался гномоном высотой 55 м. Наибольший же гномон работал в XV в. на куполе Флорентийского собора. Вместе со зданием его высота достигала 90 м.

К числу древнейших астрономических инструментов принадлежит также астрономический посох , с помощью которого наблюдатель мог определить высоту светила над горизонтом. Он состоит из линейки и рейки, которая может перемещаться по линейке. На концах рейки размещены небольшие стержни – визиры. В некоторых случаях визир с отверстием был еще на двух концах линейки, к которым наблюдатель прикладывал глаз. За положением рейки и определялась высота светила над горизонтом.

Древние греческие астрономы пользовались еще так называемым трикветром , который состоял из трех соединенных между собою линеек.

Но астрономический посох и трикветр не могли обеспечить высокую точность измерений, поэтому эти измерения начали делать с помощью квадрантов – угломерных инструментов, которые достигли большой точности до конца средневековья. В простейшем варианте квадрант представляет собой плоскую доску в форме четверти градуированного круга. Вокруг центра этого круга оборачивается подвижная линейка с двумя диоптрами (иногда вместо линейки пользовались трубками). Если плоскость квадранта вертикальная, то за положением линейки, которая направлена на светило, легко измерять высоту светила над горизонтом.

В тех случаях, если вместо четверти круга использовали его шестую часть, инструмент назывался секстантом , а если восьмую часть – октантом . Как и в других случаях, чем больший был квадрант или секстант, тем более точные измерения можно было с ним выполнять. Для того чтобы большие квадранты были стойкими и прочными их закрепляли на вертикальных стенах. Такие настенные квадранты еще в XVIII веке считались лучшими угломерными инструментами.

К такому же типу инструментов, как и квадрант, принадлежит астролябия или астрономическое кольцо . Астролябия представляет собой двухмерную модель ночного неба, разделенный на градусы металлический круг, который подвешен к какой-нибудь опоре. В центре астролябии закреплена алидада – линейка с двумя диоптрами, которая может вращаться (направляется на светило). За расположением алидады легко вычислить угловую высоту светила. В основном с помощью астролябии древние астрономы определяли положения Солнца, Луны, планет и наиболее ярких звезд.

Часто древним астрономам необходимо было измерять не высоты светил, а угловое расстояние между ними. Для этого они применяли универсальный квадрант . Этот инструмент имел две трубки – диоптры, из которых одна неподвижно скреплялась с дугой квадранта, а вторая – вращалась вокруг его центра. Главная особенность универсального квадранта – его штатив, с помощью него квадрант можно было фиксировать в любом положении. При измерениях углового расстояния, например, от звезды к планете неподвижный диоптр направлялся на звезду, а подвижный – на планету. Отсчет за шкалой квадранта давал искомый угол.

Широкое применение в астрономии нашла и армиллярная сфера , или армилла . Она представляла собой модель небесной сферы с ее важнейшими точками и кругами – полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. Армиллярные сферы также иногда дополнялись маленькими кругами – небесными параллелями и другими деталями. Почти все круги были градуированы, и сама сфера могла оборачиваться вокруг оси мира. Наклон оси мира можно было изменять соответственно широте местности.

Для точного измерения времени древние астрономы пользовались солнечными горизонтальными и экваториальными часами. Простейшие солнечные часы – экваториальные. Они состоят из стержня и циферблата, который направляется на полярную звезду за счет поднимания его на определенный угол. В горизонтальных часах роль стержня играет треугольная пластина, верхняя сторона которой направлена на полярную звезду. Эти часы отличаются еще тем, что секторы часов не равны между собой. Самые большие солнечные часы было построено в XVIII в. н.э. в Дели. Тень от треугольной 18 метровой стены, падает на оцифрованные мраморные дуги, диаметр которых достигает 6 м. Эти часы исправно работают и по сей день и показывает время с точностью до 1 минуты. Солнечные часы имеют большой недостаток – они показывают время только во время солнечной погоды, а ночью они вообще не работают. Поэтому для измерения времени древние астрономы применяли еще песчаные часы, а также клепсидры (жидкостные часы).

Угломерные инструменты

«Необходимость вычислять периоды разлития Нила создала египетскую астрономию, а вместе с тем господство касты жрецов как руководителей земледелия».

Попробуйте представить себя в роли древнего наблюдателя Вселенной, полностью лишенного каких-либо инструментов. Много ли в таком случае можно увидеть на небе?

Днем обратит на себя внимание движение Солнца, его восход, подъем до максимальной высоты и медленное нисхождение к горизонту. Если такие наблюдения повторять ото дня ко дню, можно легко заметить, что точки восхода и захода, а также наибольшая угловая высота Солнца над горизонтом непрерывно меняются. При длительных наблюдениях во всех этих переменах можно подметить годовой цикл — основу календарного летосчисления.

Ночью небо гораздо богаче и объектами и событиями. Глаз легко различит узоры созвездий, неодинаковые яркость и окраску звезд, постепенное в течение года изменение вида звездного неба. Особое внимание привлечет Луна с ее изменчивостью внешней формы, сероватыми постоянными пятнами на поверхности и очень сложным движением на фоне звезд. Менее заметны, но, несомненно, привлекательны планеты — эти блуждающие немерцающие яркие «звезды», порой описывающие на фоне звезд загадочные петли.

Спокойная, привычная картина ночного неба может быть нарушена вспышкой «новой» яркой незнакомой звезды, появлением хвостатой кометы или яркого болида, или, наконец, «падением звезд». Все эти события, несомненно, возбуждали интерес древних наблюдателей, но о действительных их причинах они не имели ни малейшего представления. На первых порах предстояло решить более простую задачу — подметить цикличность в небесных явлениях и по этим небесным циклам создать первые календари.

По-видимому, первыми это сделали египетские жрецы, когда примерно за 6000 лет до наших дней они подметили, что предутреннее появление Сириуса в лучах зари совпадает с разливом Нила. Для этого не нужны были какие-либо астрономические инструменты— требовалась лишь большая наблюдательность. Зато и ошибка в оценке продолжительности года была велика — первый египетский солнечный календарь содержал в году 360 суток.


Рис. 1. Простейший гномон.

Нужды практики заставляли древних астрономов совершенствовать календарь, уточнять продолжительность года. Предстояло разобраться и в сложном движении Луны — без этого счет времени по Луне был бы невозможен. Надо было уточнить особенности движения планет и составить первые звездные каталоги. Все перечисленные задачи предполагают угловые измерения на небе, числовые характеристики того, что до сих пор описывалось лишь словами. Так возникла нужда в угломерных астрономических инструментах.

Самый древний из них гномон (рис. 1). В простейшем варианте он представляет собой вертикальный стержень, отбрасывающий тень на горизонтальную плоскость. Зная длину гномона L и измерив длину I отбрасываемой им тени, можно найти угловую высоту h Солнца над горизонтом по современной формуле: tg h = L/l.

Древние использовали гномоны для измерения полуденной высоты Солнца в различные дни года, а главное в дни солнцестояний, когда эта высота достигает экстремальных значений. Пусть полуденная высота Солнца в день летнего солнцестояния равна Н, а в день зимнего солнцестояния h. Тогда угол ε между небесным экватором и эклиптикой равен (H — h)/2, а наклон плоскости небесного экватора к горизонту, равный 90° — φ, где φ — широта места наблюдения, вычисляется по формуле (H + h)/2. С другой стороны, внимательно следя за длиной полуденной тени, можно достаточно точно подметить, когда она становится самой длинной или самой короткой, то есть иначе говоря, зафиксировать дни солнцестояний, а значит, и продолжительность года. Отсюда легко вычислить и даты солнцестояний.

Таким образом, несмотря на простоту, гномон позволяет измерять очень важные в астрономии величины. Эти измерения будут тем точнее, чем крупнее гномон и чем, следовательно, длиннее (при прочих равных условиях) отбрасываемая им тень. Так как конец тени, отбрасываемой гномоном, не бывает резко очерчен (из-за полутени), то на некоторых древних гномонах сверху укрепляли вертикальную пластинку с маленьким круглым отверстием. Солнечные лучи, пройдя сквозь это отверстие, создавали четкий солнечный блик на горизонтальной плоскости, от которого измеряли расстояние до основания гномона.

Еще за тысячу лет до нашей эры в Египте был построен гномон в виде обелиска высотой в 117 римских футов. В царствование императора Августа гномон перевезли в Рим, установили на Марсовом поле и определяли с его помощью момент полдня. На Пекинской обсерватории в XIII веке н. э. был установлен гномон высотой 13 м, а знаменитый узбекский астроном Улугбек (XV век) пользовался гномоном, по некоторым сведениям, высотой 55 м. Самый же высокий гномон работал в XV веке на куполе Флорентийского собора. Вместе со зданием собора его высота достигала 90 м!

К числу древнейших угломерных инструментов принадлежит также астрономический посох (рис. 2). Вдоль градуированной линейки AB перемещалась подвижная рейка CD, на концах которой иногда укрепляли небольшие стержни — визиры. В некоторых случаях визир с отверстием был и на том конце линейки AB, к которому наблюдатель прикладывал свой глаз (точка А). По положению подвижной рейки относительно глаза наблюдателя можно было судить о высоте светила над горизонтом, или об угле между направлениями на две звезды.


Рис.2. Астрономический посох (слева вверху) и трикветр (справа). Слева внизу чертеж, поясняющий принцип действия астрономического посоха.

Древние греческие астрономы пользовались так называемым трикветром, состоящим из трех соединенных вместе линеек (рис. 2). К вертикальной неподвижной линейке AB на шарнирах прикреплены линейки ВС и АС. На первой из них укреплены два визира или диоптра m и n. Наблюдатель направляет линейку ВС на звезду так, чтобы звезда одновременно была видна сквозь оба диоптра. Затем, удерживая линейку ВС в этом положении, к ней прикладывают линейку АС таким образом, чтобы расстояния ВА и ВС были равны между собой. Это было легко сделать, так как на всех трех линейках, составляющий трикветр, имелись деления одинаковой шкалы. Измерив по этой шкале длину хорды АС, наблюдатель затем по специальным таблицам находил угол ABC, то есть зенитное расстояние звезды.


Рис. 3. Древний квадрант.

И астрономический посох и трикветр не могли обеспечить высокую точность измерений, и потому им нередко предпочитали квадранты — угломерные инструменты, достигшие к концу средневековья высокой степени совершенства. В простейшем варианте (рис. 3) квадрант представляет собой плоскую доску в форме четверти градуированного круга. Около центра с этого круга вращается подвижная линейка с двумя диоптрами (иногда линейку заменяли трубкой). Если плоскость квадранта вертикальна, то по положению трубы или визирной линейки, направленных на светило, легко измерить высоту светила над горизонтом. В тех случаях, когда вместо четверти круга использовали его шестую часть, инструмент назывался секстантом, а если восьмую часть — октантом. Как и в других случаях, чем крупнее был квад-рант или секстант, чем точнее была его градуировка и установка в вертикальной плоскости, тем более точные измерения с ним можно было выполнять. Для обеспечения устойчивости и прочности крупные квадранты укрепляли на вертикальных стенах. Такие стенные квадранты еще в XVIII веке считались лучшими угломерными инструментами.

К тому же типу инструментов, что и квадрант, относится астролябия или астрономическое кольцо (рис. 4). Разделенный на градусы металлический круг подвешивается к какой-нибудь опоре за кольцо А. В центре астролябии укреплена алидада — вращающаяся линейка с двумя диоптрами. По положению алидады, направленной на светило, легко отсчитывается его угловая высота.


Рис. 4. Древняя (справа) и самодельная астролябия.

Часто древним астрономам приходилось измерять не высоты светил, а углы между направлениями на два светила (например, на планету и какую-нибудь из звезд). Для этой цели весьма удобен был универсальный квадрант (рис. 5а). Этот инструмент был снабжен двумя трубками — диоптрами, из которых одна (AC) неподвижно скреплялась с дугой квадранта, а вторая (ВС) вращалась вокруг его центра. Главная же особенность универсального квадранта — его штатив, с помощью которого квадрант можно было фиксировать в любом положении. При измерениях углового расстояния от звезды до планеты неподвижный диоптр направлялся на звезду, а подвижный — на планету. Отсчет по шкале квадранта давал искомый угол.

Широкое распространение в древней астрономии получили армиллярные сферы, или армиллы (рис. 5б). По существу, это были модели небесной сферы с ее важнейшими точками и кругами — полюсами и осью мира, меридианом, горизонтом, небесным экватором и эклиптикой. Нередко армиллы дополнялись малыми кругами — небесными параллелями и другими деталями. Почти все круги были градуированы и сама сфера могла вращаться вокруг оси мира. В ряде случаев делался подвижным и меридиан — наклон оси мира можно было менять в соответствии с географической широтой места.


Рис. 5а. Универсальный квадрант.

Из всех древних астрономических инструментов армиллы оказались самыми живучими. Эти модели небесной сферы и сейчас можно купить в магазинах наглядных пособий, и они используются на учебных занятиях по астрономии для решения различных задач. Так же применяли небольшие армиллы и древние астрономы. Что же касается крупных армилл, то они были приспособлены для угловых измерений на небе.

Армилла прежде всего жестко ориентировалась так, чтобы ее горизонт лежал в горизонтальной плоскости, а меридиан — в плоскости небесного меридиана. При наблюдениях с армиллярной сферой глаз наблюдателя совмещали с ее центром. На оси мира укрепляли подвижной круг склонения с диоптрами и в те моменты, когда сквозь эти диоптры была видна звезда, отсчитывали по делениям кругов армиллы координаты звезды — ее часовой угол и склонение. При некоторых дополнительных устройствах с помощью армилл удавалось измерять непосредственно и прямые восхождения звезд.


Рис. 56. Армиллярная сфера.

На любой современной обсерватории есть точные часы. Были часы и на древних обсерваториях, но они и по принципу действия и по точности сильно отличались от современных. Самые древние из часов — солнечные. Их употребляли еще за много веков до нашей эры.

Простейшие из солнечных часов — экваториальные (рис. 6, а). Они состоят из стержня, направленного к Полярной звезде (точнее, к северному полюсу мира), и перпендикулярного к нему циферблата, разделенного на часы и минуты. Тень от стержня выполняет роль стрелки, причем шкала на циферблате равномерная, то есть все часовые (и, конечно, минутные) деления равны между собой. У экваториальных солнечных часов есть существенный недостаток — они показывают время лишь в период с 21 марта до 23 сентября, то есть когда Солнце находится над небесным экватором. Можно, конечно, сделать двусторонний циферблат и укрепить еще один нижний стержень, но от этого экваториальные часы вряд ли станут более удобными.


Рис. 6. Экваториальные (слева) и горизонтальные солнечные часы.

Более употребительны горизонтальные солнечные часы (рис. 6, б). Роль стержня в них обычно выполняет треугольная пластинка, верхняя сторона которой направлена на северный полюс мира. Тень от этой пластинки падает на горизонтальный циферблат, часовые деления которого на этот раз не равны между собою (равны лишь попарно часовые деления, симметричные относительно полуденной линии). Для каждой широты оцифровка циферблата таких часов различна. Иногда вместо горизонтального употребляли вертикальный циферблат (настенные солнечные часы) или циферблаты особой сложной формы.

Самые крупные солнечные часы были построены в начале XVIII века в Дели. Тень от треугольной стены, вершина которой имеет высоту 18 м, падает на оцифрованные мраморные дуги с радиусом около 6 м. Эти часы исправно действуют до сих пор и показывают время с точностью до одной минуты.

Все солнечные часы обладают очень большим недостатком — в пасмурную погоду и по ночам они не работают. Поэтому наряду с солнечными часами древние астрономы употребляли также песочные часы и водяные часы, или клепсидры. И в тех и в других время, по существу, измеряется равномерным движением песка или воды. Небольшие песочные часы встречаются до сих пор, клепсидры же постепенно вышли из употребления еще в XVII веке после того как были изобретены высокоточные механические маятниковые часы.

Как же внешне выглядели древние обсерватории?

Секстант, угломерный инструмент

Секстант (секстан) — это измерительный инструмент, используемый для измерения величины угла между двумя видимыми объектами. Обычно секстант используется для измерения возвышения астрономического объекта над горизонтом с целью определения географических координат. Например, измерив угол возвышения Солнца в полдень, можно вычислить широту.

Длина шкалы секстанта составляет 1/6 от полного круга или 60°, название секстанта происходит с латыни (sextans, — tis — шестая часть). Октант — похожий прибор, но с более короткой шкалой (1/8 круга или 45°), который использовался до 1767, пока его не заменил секстант. В 1767 первое издание навигационного альманаха собрало в своих таблицах лунные расстояния, что позволило навигаторам вычислять текущее время, зная угол между солнцем и луной. Однако, этот угол иногда больше 90°, и поэтому не может быть измерен с помощью октанта.

В секстанте используется принцип совмещения изображений двух объектов при помощи двойного отражения одного из них. Этот принцип был изобретён Исааком Ньютоном в 1699 году, но не был опубликован. Два человека независимо изобрели секстант в 1730: английский математик Джон Хадли и американский изобретатель Томас Годфри. Секстант вытеснил астролябию как главный навигационный инструмент.

Содержание

Преимущества

Главная особенность, которая позволила секстанту вытеснить астролябию, заключается в том, что при его использовании положение астрономических объектов измеряются относительно горизонта, а не относительно самого инструмента. Это даёт бо́льшую точность.

При наблюдении через секстант, горизонт и астрономический объект совмещаются в одном поле зрения, и остаются неподвижными относительно друг друга, даже если наблюдатель находится на плывущем корабле. Это происходит, потому что секстант показывает неподвижный горизонт прямо, а астрономический объект — сквозь два противоположных зеркала.

Устройство

Части секстанта смонтированы на раме образованной двумя радиусами и дугой, которая называется лимбом. С помощью секстанта можно измерять углы до 140° влево от нулевого индекса и до 5° вправо, эти деления находятся на лимбе. На левом радиусе неподвижно установлены малое зеркало и светофильтры. Половина поверхности малого зеркала прозрачна. В вершине рамы на подвижном радиусе, называемом алидадой, укреплено большое зеркало. На другом конце алидады укреплён отсчётный барабан, разделённый на 60-минутные деления. Труба вставляется в специальную стойку на раме секстанта.

Использование

Изображение в секстанте совмещает в себя два вида. Первый — вид неба через зеркала. Второй — вид горизонта. Секстант используют, регулируя рычаг и установочный винт до тех пор, пока нижний край изображения астрономического тела не коснётся горизонта. Точный момент времени, в который проводится измерение, засекает ассистент с часами. Затем угол возвышения считывается со шкалы, верньера и установочного винта, и записывается вместе со временем.

После этого нужно преобразовать данные с помощью некоторых математических процедур. Самый простой метод — нарисовать равновозвышенный круг используемого астрономического объекта на глобусе. Пересечение этого круга с линией навигационного счисления или другим указателем даёт точное местоположение.

Секстант — чувствительный инструмент. Если его уронить, то дуга может погнуться. После падения он может потерять точность.

См. также

  • Астрономическая навигация
  • Квадрант (астрономический инструмент)
  • Улугбек

Wikimedia Foundation . 2010 .

  • Секстант (инструмент)
  • Сексте

Смотреть что такое «Секстант, угломерный инструмент» в других словарях:

Секстант угломерный инструмент — см. Угломерные инструменты … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Секстант, угломерный инструмент — см. Угломерные инструменты … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

угломерный инструмент — ▲ инструмент (технический) угломер. угломерный. транспортир. лимб. уровень. ватерпас. отвес. гониометр. теодолит инструмент для измерения на местности вертикальных и горизонтальных углов. секстант. тахеометр. квадрант. | клинометр. кренометр.… … Идеографический словарь русского языка

Октант угломерный инструмент — угломерный отражательный инструмент, ныне вышедший из употребления (см. Секстант) … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Октант, угломерный инструмент — угломерный отражательный инструмент, ныне вышедший из употребления (см. Секстант) … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

СЕКСТАНТ — (лат.). 1) вообще шестая часть. 2) прибор, для измерения углов. 3) созвездие на южном небе. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. СЕКСТАНТ лат. sextans. Астрономический прибор, для наблюдения высоты и… … Словарь иностранных слов русского языка

СЕКСТАНТ (инструмент) — СЕКСТАНТ (от лат. sextans шестой), в морском деле секстан, астрономический угломерный инструмент, применяемый в мореходной и авиационной астрономии. Лимб секстанта составляет 1/6 часть окружности … Энциклопедический словарь

СЕКСТАНТ — (от лат. sextans шестой) в морском деле секстан, астрономический угломерный инструмент, применяемый в мореходной и авиационной астрономии. Лимб секстанта составляет 1/6 часть окружности … Большой Энциклопедический словарь

СЕКСТАНТ — СЕКСТАНТ, секстанта, муж. (лат. sextans шестая часть) (астр., геод.). Угломерный инструмент для геодезических и астрономических наблюдений, состоящий из дуги, равной 1/6 части окружности, и двух зеркал. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 … Толковый словарь Ушакова

секстант — СЕКСТАНТ, а, муж. (спец.). Угломерный инструмент для определения угловых высот небесных светил. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Устройство секстанта и правила использования

В древности не было даже представления о спутниках, постоянно находящихся над Землей, передающих сигналы нахождения объектов, Но людям необходимы были механизмы для определения ориентиров движения. Многочисленные руководства, учебники, пособия по навигации описывают их технические характеристики, как использовать секстант и другие средства измерения.

История создания

Первое упоминание о примитивных прообразах такого угломерного средства измерения встречается в старинных манускриптах, рассказывающих о путешествиях, открытии новых стран, звезд, мореплавании.

Из-за своего устройства инструмент получил название «sextans» (перевод с латинского означает шестой).

Сначала был изобретен компас для определения направления движения. При помощи часов высчитывали долготу, астролябии — широту, но они не давали точных результатов.

Ученые многих стран занимались усовершенствованием угломерных изделий. Но история сохранила только два имени тех, кто изобрел секстант одновременно, используя научный потенциал того времени. Это Джон Хэдли из Англии, Томас Годфрис из США.

Независимо друг от друга в 30-е годы XVIII столетия они разработали структуру октанта, сократив шкалу измерения до одной восьмой окружности, а капитан Камбел в 1757 году усовершенствовал изделие, уменьшив лимб до шестой части круга.

Это изделие стали называть морским секстаном, ставшим прародителем современных угломерных инструментов для навигации.

Принцип его действия, как предшествующего октанта, основан на принципе двойного отражения, изобретенным в 1699 году Исааком Ньютоном.

Отражательная оптическая система, состоящая из двух зеркальных поверхностей или призм, позволяет быстро, с точностью выполнять угловые измерения.

Разные модели отличаются:

  • строением рамы,
  • алидадой с осью,
  • отсчетным устройством.

Сначала использовали только верньер – пластинку, где деления были короче, чем на главной шкале лимба. Современные производители оснащают изделия микрометрическими винтами, отсчетными барабанами, зубчатыми рейками.

Эти модели позволяют осуществлять угловой отсчет угла быстрее, но требуют специальной методики наблюдений, более тщательного ухода.

Сегодня для кораблей морского флота выпускают модели приборов с искусственным горизонтом ИМС, ИМС, изделия СНО, СНО-2М, СНО- М, перископические, новейшую конструкцию с осветителем секстанта СНО-Т тропикоустойчивого варианта.

Некоторые морские суда оснащаются немецкими моделями VEB и «Плат».

Отличительная черта секстанта в том, что с его помощью высота небесных объектов измеряется по отношению к горизонту, а не по отношению к конструкции средства измерения. Это дает более точные координаты, чем предшествующие угломеры.

Астрономический инструмент

Потребность ориентирования у человечества росла вместе с освоением животноводства, земледелия, мореплавания. Для этого люди изучали движение звезд, Солнца и Луны, создавали механизмы систематизации светил и планет.

С возникновением эклиптики, разбитой на 12 частей, появились названия формируемых созвездий и создавались центры, подобные обсерватории Улугбека в Самарканде, которые оснащались астрономическими инструментами:

  • гномоном,
  • армиллярной сферой,
  • вольвеллами.
  • астролябией,
  • хронометром,
  • квадрантом,
  • октантом.

От квадранта и октанта прибор секстант отличается тем, что у него 6 долей окружности, а не 4 и 8 соответственно. В остальном принцип измерения этими угломерами одинаков.

По конструкции древнейшие средства измерения представляли собой дугу, разделенную на одноградусные деления для определения положения планет.

Восточный математик и астроном Аль-Худжанди в IX – X веке создал один из крупнейших инструментов.

Он представлял собой фреску, расположенную на 60-градусном отрезке дуги длиной 43 метра внутри здания. Каждое одноградусное деление было ювелирно точно разделено на 360 частей. Над дугой располагался потолок в виде купола с отверстием посередине, через которое лучи солнца попадали на древний угломер.

Устройство

Конструктивно прибор состоит из

  • рамы,
  • лимба,
  • алидады,
  • зрительной трубки,
  • большого и малого зеркала,
  • светофильтров,
  • лупы,
  • рычагов зажима алидады,
  • отсчетного элемента,
  • винтов для поправок измерений.

Детали, циферблат секстанта смонтированы на раме. Лимб образован двумя радиусами, дугой. Зеркало меньшего размера с прозрачной половиной и светофильтры крепко смонтированы на радиусе слева.

На вершине рамы смонтирован двигающийся радиус, называемый алидадой. На его одном конце закреплено зеркало большого размера, а другом – отсчетное устройство, разделенное на 60-минутные частички. Визирная трубка прикреплена к специальной стойке.

Принцип получения координат, используя устройство секстанта, остался таким же, как в прошлые века. Конструкция на поверхности одного зеркала спускает Солнце до линии горизонта, которая видна на поверхности другого зеркала, и указывает угловое отклонение на отсчетной детали.

Производители комплектуют современные модели отсчетно-стопорными устройствами, состоящими из микрометрического винта, отсчетного барабана, зубчатой рейки. Так как эти конструкции требуют специального метода наблюдений, современные изготовители предлагают модели с автоматическим съемом, дистанционной передачей данных для записи, дальнейшей компьютерной обработки.

Подробно о том, как работает такой секстант, описывает инструкция, прилагаемая к прибору.

Технические характеристики

Все виды секстантов очень похожи. Они различаются только отдельными деталями. Значение угла показывается в градусах индексом алидады, а минуты — отсчетным барабаном. Штрихи лимба и барабана покрыты светящимся красителем.

Каждый прибор для навигации снабжается формуляром с техническими характеристиками, результатами определения инструментальных поправок в лаборатории предприятия. Приводится также мертвый ход морского секстанта, указывается срок действия поправок, после которого необходимо провести переаттестацию инструмента.

При использовании на водных объектах рекомендуется контроль параллельности трубы и лимба один раз в квартал, перпендикулярности зеркал — еженедельно.

Следует учитывать, что 60-градусный сектор, давший название инструменту, реально отражает углы в диапазоне от 0 до 120 градусов, а из-за использования зеркал «шкала» «сужается» точно вдвое.

Правильное использование – гарантия точности

Секстант как угломерный инструмент считается самым точным из «классических» приборов. С одной стороны, им определяется вертикальный угол между горизонтом и небесным объектом, выбранным для расчета координат нахождения морского судна.

С другой стороны — для определения горизонтального угла при наземных измерениях.

Для получения правильных значений высоты, необходимо четкое наложение изображений в поворотном зеркале.

Модели угломеров типа тропикоустойчивого секстанта сно т оснащаются жидкостным уровнем или гироскопом, благодаря чему можно применять прибор без наблюдения естественной линии горизонта.

Его можно использовать на кораблях неограниченного региона плавания. Как правильно настроить и использовать секстант производители описывают в паспорте изделия.

Регулировка

Точно измерить угол светила можно только при правильной установке угломерного прибора. Чтобы убедиться в том, что секстант расположен вертикально, конструкцию перемещают из стороны в сторону. Это вызывает колебания изображения. Прибор установлен правильно, когда светило находится внизу кривой.

Из-за высокой чувствительности конструкции легко сбивается его настройка, поэтому необходима частая корректировка.

С ее помощью можно устранить ошибки:

  • большого и малого зеркала,
  • параллельности,
  • индекса.

Преимущества:

  • визирование объектов осуществляется одновременно,
  • простота, быстрота определения географических координат,
  • точное позиционирование на уровне горизонта и контроль наклона.

Как сделать секстант самостоятельно

Для того, чтобы сделать простейший секстант своими руками, нужно склеить небольшую трубку — окуляр. Лучше из картона. Из него же сделать объектив – трубку побольше диаметром. Вставленный в него окуляр при движении не должен качаться.

Из фанерного листа изготовить сектор и алидаду. К нижней дуге сектора приклеить Шкалу из бумаги приклеить к нижней дуге сектора, отметив на конце черту. Нанести разметку, разделив на 120 частей 60-градусный угол.

Соединить алидаду с сектором, закрепить болтиком в середине. С другой стороны, сделать рукоятку.

По центру вращения закрепить маленькое зеркало отражающей поверхностью к наблюдателю.

Зеркало размером больше и с очищенной от амальгамы верхней половиной закрепить у переднего выступа сектора. Его поверхность должна быть параллельна поверхности маленького зеркала, когда алидадная черта совпадает с нулевой отметкой.

Для измерений необходимы знания астрономии, геометрии, тригонометрии.

Доклад: Астрономические инструменты. Угломерные инструменты

Интересно, что у почти у всех начинающих любителей астрономии бессознательно сложилось мнение, что первый прибор по астрономии, который они должны иметь – это хотя бы небольшой телескоп, или нечто подобное, бинокль или монокуляр. Но астрономы знали и менее «примитивных» помощников в своем труде, чем бинокли и телескопы, и эти помощники и ныне могут сыграть свою полезную роль при любительских наблюдениях, пусть и своебразную и небольшую (да и сейчас профессионалы-астрономы все еще пользуются механизмами этих приборов, оснащают ими телескопы для точности, и используют все для того же – определения углов на небесной сфере). До 1611 года, до знаменательного года изобретения телескопа всем достославным Галилео Галилеем (или кем-то еще раннее, но все равно он был первым, использавшим телескоп для серъезных астрономических наблюдений), астрономы пользовались всякими расчерченными на градусы в прямом смысле деревянными палочками и перекладинами, квадратиками и кружочками больших и малых размеров. Это были всякие там астрономические посохи, высотомеры, секстанты, квадранты и трикветры. Ими пользовались древнегреческие астрономы (а они почти все эти инструменты впервые и создали), и Аристарх, и Гиппарх, и Птолемей, и в средние века арабские астрономы довели их до совершенства. Использовались эти приборы для решения задач самого раннего зародившегося раздела астрономии – астрометрии, занимающейся вопросами над небесными светилами «Где, когда, и что» – для расчета положений светил на небесной сфере, расстояний между звездами, определению по небу времени, и поэтому они и называются угломерными инструментами. Как и все приборы они требовали большей точности, и их и делали для этого как можно большими, а у арабских астрономов они стали настоящими громадинами, так квадранты достигали радиуса 60 м, а Николай Коперник с помощью таких приборов определяющий координаты планет и рассчитывающий по ним уже свою гелиоцентрическую систему, пользовался приборами, намного превышающими его рост. Но не обязательно было всегда делать такие громадины, для многих задач подходили и маленькие приборы. И конечно же, такие приборы (пусть и станут они у вас самыми первыми – или новыми помощниками, если уже у вас есть бинокль или телескоп, делать их намного проще самого простого телескопа), по силу сделать их любому любителю астрономии, человеку. Основные материалы для этого найдутся у всех: дерево, пила, и транспортир… И благо, с ними можно и делать много полезного, они хорошие помощники в тех же визуальных наблюдениях метеоров, они помогают точнее, лучше и удобнее определить координаты метеора, положения серебристых облаков (которые также наблюдаются в основном визуально), совсем новичкам в наблюдениях звездного неба помогут легче понять смысл эфемерид и найти самим на небе планеты, понять структуру и определения начальных теорий небесной сферы. К тому же и просто приятно обнаружить себя в душе каким-то древним астрономом, ощутить на себе эхо далекого прошлого, посмотреть на небо глазами древнего грека, араба с жарких пустынь, Улугбека, Коперника или Тихо Браге! А ниже – пусть и некоторые угломерные инструменты, и как их делать, что я насобирал из всякой астролитературы, которой уже и не помню. Многое соорудил сам, видя лишь где-то картинку какого-то исторического угломерного инструмента.

Естественно же более упрощенная, чем древний предок, решает намного меньше задач. Так, в трактате арабского астронома Х в. ас-Суфи перечислялось 1000 способов использования астролябии! Эта астролябия же поможет измерять горизонтальные углы азимутов светил. Для ее изготовления необходимо иметь:

Диск из многослойной фанеры, текстолита или оргстекла. Диаметр диска такой, чтобы на нем разместилась круговая шкала (лимб) из транспортира и за ней оставалось бы свободное поле 2-3 см.

Транспортир, лучше из тех, что есть, побольше.

Визирная планка. Изготовляется из плоскости латуни или дюралюминия шириной 2-3 см, и длиной, превышающей поперечник диска на 5-6 см. Выступающие за край диска концы полоски изогните под прямым углом вверх и пропилите в них продолговатые или круговые отверстия. На горизонтальной планке симметрично центру проделайте две большие широкие прорези, чтобы чрез них была виден градуируемый лимб транспортира. Середину визирной планки прикрепите к центру диска, с помощью болта, шайб и гаек, чтоб она вращалась в горизонтальной плоскости. На визирную планку к центру прикрепите и компас.

При наблюдениях направляйте визирную планку на светило так, чтобы оно было видно сквозь боковые прорези планки. Отношение градусной меры транспортира к планке (видную через поперечную прорез планки, через ту, что «ближе» к светилу) к стрелке севера компаса и будет азимутом светила.

Как найти самому азимут, высоту и зенитное расстояние

Да вообще, не трудно догадаться, что измерять самому высоту и азимут светила можно и при помощи транспортира. Но как его положить, чтобы он «видел» круги небесной сферы? Один из простейших инструментов для этого – высотомер, с которым мы и познакомимся сейчас. Высотомер состоит из как можно большего (ну, и не метрового конечно – трудно будет делать!) транспортира, содержащего 1800. Из центра окружности А транспортира и перпендикулярно его радиусу (разделяющего наш транспортир на две равные части) устанавливается линейка (или рейка) такой длины, чтобы она в 3-4 раза превосходила радиус транспортира. А в центр транспортира привинчивают шарнир, а к нему веревку с грузом, так, чтобы веревка была тонка, а груз ее не порвал. Если веревка в точке скрепления проходит вдоль линейки, то значит она прикреплена верно. К транспортиру, выше линии 0-1800 его шкалы и параллельно ей устанавливают еще визиры, из трехизогнутой (как у астролябии) планки, средняя сторона которой равна диаметру транспортира, другие (боковые) равны друг другу, и в точке пересечения диагоналей этих квадратов или прямоугольников проделайте дырки-окружности диаметром 3-5 мм. Противоположный конец линейки перпендикулярно к центру прикрепите к не очень толстой дощечке так, чтобы она без колебаний держала линейку к своему креплению, и чтоб линейка вращалась вокруг своего центра, а этот центр вставляется в центр окружности еще одного транспортира, на этот раз на полную окружность (3600). Внизу к линейке прикрепите какую-нибудь стрелку, чтобы та исходила из этого центра транспортира и «доставала» до его внешнего края. Так же к дощечке желательно прикрепить компас, для указания юга, от которого отсчитываются астрономические азимуты. Прибор перед началом наблюдений устанавливают так, чтобы дощечка находилась неподвижно и по горизонтали, а нижний транспортир на 00 шкалы по компасу направлен на юг, часть от 0 до 1800 направлена к востоку, другая к западу. При измерении азимута и высоты светила (измеряются одновременно!) мы направляем на него визиры так, чтобы сквозь них оно было видно, и конечно, центр вращения А (для отсчитывания высоты) направляется сверху вниз, а в месте крепления к доске вправо-влево. Таким образом, получив изображение искомого светила в визире мы увидем, что верхний транспортир наклонен под определенным углом, отмеченным на шкале веревкой, это и есть высота h светила, а стрелка к нижнему транспортиру покажет значение азимута. Зенитное расстояние z же можно легко узнать по формуле z+h = 900.

Углы между светилами

Т.н. астрономические грабли – простейший вариант угломерного прибора, состоит из двух деревянных линеек (например, по 60 см длиной), скрепленных в форме буквы Т. На конце линейки, противоположно перекладине, укрепляется визир. На перекладине по дуге окружности 57,3 см (построить можно с помощью шнура) с интервалом в 1 см (либо в 0,5 см) вбиваются гвоздики. Центром окружности является визир. При интервале разбития гвоздиков в 1 см соответствует угол в 1 градус на небесной сфере, при 0,5 см угол в полградуса. С помощью этого нехитрого инструмента можно проводить регулярные (скажем, каждый вечер в одно и то же время) измерения угловых расстояний планет и Луны относительно некоторых «опорных» звезд и тем самым устанавливать особенности движения упомянутых светил на небесной сфере.

Другой прибор так и называется угломерным инструментом. Состоит он из прямоугольного куска дерева 35*20 см. С одной из его сторон неподвижно прикреплена рейка (или линейка) длиной 60 см. В противоположном конце рейки прикрепляется другая такая же так, чтоб она вращалась вокруг центра крепления. По обеим концам реек параллельно прикрепляются визиры. На доске, аналогично астрономическим граблям, очерчена дуга радиусом 57,3 см, на ней нанесена шкала градусов. При наблюдениях обычно визиры одной рейки направляют на звезду, неподвижной – на планету. Полученное на шкале расстояние концов реек и есть их угловое расстояние. С помощью этих приборов можно находить и горизонтальные координаты светила. Так, найдя юг (отметив его по компосу) мы от него отмерим расстояние до светила, и по градуируемой шкале получим его азимут. Отложив от светила прямое и точное направление на горизонт, получим его высоту, а от зенита – его зенитное расстояние. Подумайте, как тогда надо распложить приборы относительно горизонта и вертикали.

Наконец, теперь замечу, если кто захочет или кому понадобится найденные с инструментами горизонтальные координаты перевести в «общие» для всех экваториальные, то сделать это можно просто по формулам:

Sin δ = sin φ cos z — cos φ sin z cos A

Cos δ sin t = sin z sin A

Cos δ cos t = cos φ cos z + sin φ sin z cos A

где δ — склонение, t – часовой угол светила (с помощью его можно легко найти прямое восхождение α по формуле α = s – t, где s – звездное время момента наблюдений), z – зенитное расстояние, h – высота светила, А – его азимут, φ — широта места наблюдения. Не забудьте и об значении рефракции, влияющей на координаты светила (хотя, в основном, если координаты светила измерять, когда оно близ зенита, эта малая величина). И наверное, описанных нами угломерных инструментов, пока достаточно, чтобы понять основной механизм их постройки, и делать все остальное полностью самому – лишь увидев какой-то угломерный инструмент на рисунке.

Список литературы

1.Энциклопедический словарь юного астронома

Древнейшие астрономические инструменты

Автор работы: Пользователь скрыл имя, 25 Декабря 2012 в 14:21, реферат

Краткое описание

Вся история астрономии связана с созданием инструментов, позволяющих повысить точность астрономических наблюдений.

Вложенные файлы: 1 файл

ДРЕВНЕЙШИЕ АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫ.docx

ДРЕВНЕЙШИЕ АСТРОНОМИЧЕСКИЕ ИНСТРУМЕНТЫ

Вся история астрономии связана с созданием инструментов, позволяющих повысить точность астрономических наблюдений. Первыми появились угломерные инструменты.

Самый древний угломерный инструмент — это гномон. Он использовался для определения высоты Солнца над горизонтом и представлял собой вертикальный столб на горизонтальной площадке. С помощью такого простейшего приспособления можно было отмечать дни солнцестояний, а значит, фиксировать продолжительность года. Чем гномон выше, тем длиннее отбрасываемая им тень, тем точнее измерения.

Астрономический посох использовался для определения положения светил над горизонтом. Он представлял собой две скрещенные линейки с укрепленными на концах одной из них стержнями — визирами. Эта линейка перемещалась вдоль делений относительно глаза наблюдателя, и по ее положению можно было судить о высоте светила и угле между направлениями на две звезды.

Армилла — древний астрономический инструмент для измерения углов на небесной сфере, состоявший из подвижных колец, изображавших различные круги небесной сферы.

Наибольшую точность измерений давал квадрант — четверть градуированного круга с подвижной линейкой. Если вместо четверти использовали шестую часть круга, то инструмент назывался секстант, а если восьмую — октант. Чем крупнее был инструмент, чем точнее была его градуировка и установка в вертикальной плоскости, тем более точные измерения можно было с ним выполнить.

Астролябия относится к тому же типу инструментов. Моделью небесной сферы с ее важнеишими точками и кругами, меридианом, горизонтом, полюсами и осью мира, эклиптикой служила армиллярная сфера, или попросту армилла. Ее как наглядное пособие используют до сих пор на учебных занятиях по астрономии.

Древние астрономы умели измерять не только координаты светил, но и время их нахождения в той или иной точке небесной сферы.

Самые древние часы — солнечные. Они состоят из стержня, направленного к Полярной звезде, и циферблата, разделенного на часы и минуты. Тень от стержня выполняла роль стрелки. С помощью таких часов можно было определять время с точностью до минуты, но, к сожалению, в пасмурную погоду они «не работали». Поэтому употребляли песочные и водяные часы, где время измерялось равномерным движением песка или воды.

Телескопы — это астрономические оптические приборы, предназначенные для наблюдения небесных тел. Первые из них были двух видов — линзовые, или рефракторы, и зеркальные, или рефлекторы. У рефракторов объектив, собирающий световые лучи, изготовлен из стеклянных линз, а у рефлекторов объективом служит вогнутое зеркало.

К настоящему времени имя первого изобретателя телескопа доподлинно не установлено. На этот счет существует две версии. Некоторые исследователи отдают пальму первенства голландскому оптику и торговцу стеклянными линзами для очков Захарию Янсену, правда, с оговоркой, что тот, создавая в начале XVII века прибор-дальновидец (так с греческого переводится слово «телескоп»), всего лишь воспользовался идеей неизвестного итальянского изобретателя, сняв с оригинала копию. Другие считают, что первые упоминания о приборе, позднее названном телескопом, встречаются у английского мыслителя, доктора богословия Парижского университета РоЭ-жера Бэкона (1214-1292), и что именно он является его первооткрывателем.

Первым ученым, который провел астрономические исследования с помощью телескопа- рефрактора, был итальянский ученый Галилео Галилей (1564-1642). Узнав в 1609 году об изобретенном в Голландии приборе-дальновидце, он самостоятельно сконструировал зрительную трубу из свинца с двумя стеклянными линзами — плоско-выпуклым объективом и плоско-вогнутым окуляром. Она давала прямое мнимое изображение. Увеличение трубы (первоначально в 3 раза) ученый довел до 32-х раз и в том же году впервые применил этот инструмент для наблюдения неба.

Первые телескопы-рефракторы, имевшие линзовые объективы, давали нечеткое изображение, окрашенное радужным ореолом. В их совершенствовании большая заслуга принадлежит немецкому астроному и математику Иоганну Кеплеру (1571 — 1630). В своем сочинении «Диоптрика» (1611) он разработал схему астрономической трубы с двояковыпуклым объективом и окуляром (труба Кеплера, дающая действительное обратное изображение предмета). Эта схема лежит в основе современных рефракторов.

Первый телескоп-рефлектор появился в 1668 году. Его конструкцию разработал английский ученый Исаак Ньютон (1643-1727), до этого делавший неоднократные попытки усовершенствовать объективы для телескопов-рефракторов. Рефлектор Ньютона (длина — 15 см, диаметр гладкого зеркала — 2,5 см) был свободен от многих оптических недостатков, свойственных рефракторам; с его помощью можно было видеть спутники Юпитера. За свое изобретение ученый был избран членом Лондонского королевского общества (1672).

Совершенствованием телескопов- рефлекторов занимался русский ученый- энциклопедист Михаил Васильевич Ломоносов (1711 — 1765). Он изобрел отражательный телескоп-рефлектор с наклонным (на 4°) зеркалом, дававшим яркое изображение объекта. Наряду с этим, Ломоносов был первым астрономом, который сконструировал и создал прообраз современного горизонтального телескопа с сидеростатом (подвижным зеркалом, с помощью которого свет от небесных объектов направляется в неподвижную астрономическую трубу). Изобретательность помогала русскому ученому создавать приборы для ориентации по звездам при точном измерении времени. Он сам обучал моряков и штурманов. Изобрел даже «ночезрительную трубу» для наблюдения за кораблями ночью и различными небесными явлениями.

Особенно больших успехов в сооружении телескопов-рефлекторов добился великий английский астроном и конструктор Вильям Гершелъ (1738 — 1822). Постепенно увеличивая диаметры изготавливаемых зеркал, он в 1789 году отшлифовал для своего телескопа самое большое зеркало с рабочим диаметром 122 см (полный диаметр зеркала был равен 147 см, а вес — 2 т). В то время это был величайший в мире рефлектор. Конструкция рефлектора Гершеля, сооруженного на открытой площадке, была также весьма внушительной: гигантская труба длиной 12 м приводилась в движение с помощью системы канатов и блоков. Наблюдатель поднимался по приставной лестнице к верхнему концу трубы и, стоя на маленькой площадке, терпеливо ловил слабые лучи, прилетавшие из далекой Вселенной. Уникальный рефлектор Гершеля оставался непревзойденным почти до середины XIX века, когда появился еще более крупный зеркальный телескоп (с фокусным расстоянием более 18 м и диаметром зеркала 183 см) английского астронома Вильяма Пар-сонса (1800-1867).

ПЕРВЫЕ АСТРОНОМИЧЕСКИЕ ОБСЕРВАТОРИИ

Создание первых астрономических обсерваторий (т. е. учреждений, в которых ведутся систематические наблюдения за небесными светилами и явлениями) теряется в глубокой древности. Они существовали в Египте, Вавилоне, Ассирии, Персии, Индии и некоторых других государствах еще за несколько тысячелетий до нашей эры.

Древнейшая обсерватория обнаружена на территории Республики Армения у холма Мецамор близ Еревана. По мнению археологов, обсерватория эта была построена более пяти тысяч лет назад, задолго до образования Урарту — мощного государства древнего мира.

К числу древнейших обсерваторий в мире специалисты относят комплекс сооружений, расположенный на территории американского штата Луизиана в средней части реки Миссисипи (II тыс. до н. э.). Он состоит из шести восьмигранников правильной формы, разделенных четырьмя радиальными проходами, причем две постройки расположены на местах, соответствующих направлениям заката Солнца в дни зимнего и летнего солнцестояния.

По мнению многих специалистов, к числу самых древних обсерваторий относятся и знаменитые на весь мир развалины Стоунхенджа. Это сооружение было построено примерно во II — III тысячелетии до нашей эры в местечке, расположенном посередине Солсберийского плоскогорья в 128 км от Лондона. По внешней окружности Стоунхенджа (что в буквальном смысле слова означает «висящие камни») возвышаются 30 каменных столбов голубоватого цвета высотой около 5,5 м каждый, верхние грани которых связаны между собой мощной каменной цепью. Внутри этой древней крепости находится огромная глыба, выстроенная из еще более гигантских столбов (высота их — 8,5 м, а масса — 50 т). По форме она напоминает подкову. Кроме внешнего «кольца» и главной «подковы» во внутренней части сооружения выложены еще несколько более мелких, расположенных в строгой последовательности одна внутри другой. Принято считать, что в Стоунхендже древние наблюдатели могли определять дни весеннего и осеннего равноденствия, а также зимнего и летнего солнцестояния.

Одна из самых первых постоянно действующих обсерваторий была построена в Китае (XII век до н. э.). Она представляла собой башню с площадкой наверху, предназначенной для размещения переносных угломерных инструментов. Астрономы Древнего Китая ввели в употребление солнечные и лунные календари, составляли звездные каталоги, изготовили звездный глобус, аккуратно регистрировали появление комет, вспышки ярких звезд. Эти наблюдения, сведения о которых пришли из глубины веков, ценны и для современной астрономии. Кроме того, древние китайские астрономы первыми открыли пятна на Солнце, о чем сделана запись в одной из китайских летописей.

Грандиозное сооружение представляла собой великолепная обсерватория, построенная на окраине древнего Самарканда султаном Улуг-беком (1394-1449). Это было цилиндрическое трехэтажное здание с множеством окон и помещений. В центре здания находился широкий проем, расположенный по меридиану, в котором располагался главный угломерный инструмент обсерватории — исполинский секстант. Размеры его огромны — радиус дуги больше 40 м. Визиры инструмента передвигались по специальным рельсам, и с их помощью фиксировалось направление на небесное светило. Наряду с основным измерительным инструментом Улугбек и его помощники использовали при астрономических наблюдениях и переносные угломерные приборы. В обсерватории Улугбека впервые была измерена важнейшая астрономическая величина — наклон эклиптики к экватору, составлен знаменитый звездный каталог, содержащий положения на небе 1018 звезд (в течение долгого времени он считался лучшим в мире), определены географические координаты различных мест в Средней Азии. Улугбеком написана теория затмений. Про него Алишер Навои говорил, что он «протянул руку к наукам и добился много. Перед его глазами небо стало близким и опустилось вниз». Просветительская и научная деятельность столь необычного для средневекового Востока правителя вызывала ненависть мусульманских фанатиков. Улугбек был убит, погибла и его прекрасная обсерватория. В настоящее время она частично восстановлена и превращена в музей.

Астрономические обсерватории современного типа появились в XVII веке после изобретения телескопа. Самыми первыми среди них были Парижская (1667) и Гринвичская (1675), до сих пор считающаяся одной из самых крупных обсерваторий мира. Наряду с угломерными инструментами в этих обсерваториях использовались большие телескопы-рефракторы. К концу XVIII века государственные обсерватории функционировали по всему миру и их число достигло 100, а к концу XIX века таких обсерваторий было уже около 400.

Оцените статью