Каковы общие физические свойства металлов?

Каковы общие физические свойства металлов? § 61. Физические свойства металлов Кристаллические решетку металлов сходны с атомными решетками. Но в атомных решетках связи между атомами
Содержание

Каковы общие физические свойства металлов?

Каковы общие физические свойства металлов?

§ 61. Физические свойства металлов

Кристаллические решетку металлов сходны с атомными решетками. Но в атомных решетках связи между атомами ковалентные, а в металлах мы встречаемся с новым видом химической связи: металлической связью. Валентные электроны не закреплены в металлах каждый за своим атомом или своей парой атомов (как в ковалентных связях), а могут отщепляться от атомов и свободно блуждать между ними. Такие электроны осуществляют связь между ионами металла, наподобие прослойке воды между сложенными вместе пластинками: она позволяет перемещать пластинки относительно друг друга, но сопротивляется отрыванию одной пластинки от другой. Из такого внутреннего строения металлов проистекают их характерные, общие физические свойства:

  1. Пластичность. При деформации, т. е. изменении формы куска металла, происходит смещение пластов из ионов относительно друг друга, но разрыва не происходит, так как связывающие их электроны, соответственно переместившись, продолжают осуществлять связь между сместившимися ионами.
  2. Электропроводность. Она обусловливается свободой перемещения электронов, поскольку они не закреплены каждый за своим атомом, по всему куску металла.
  3. Высокая теплопроводность. Переносчиками тепловой энергии из одного участка в куске металла в другой являются главным образом те же электроны.

Они же являются причиной общих оптических свойств неметаллов — непрозрачности и металлического блеска.

По металлическому блеску мы узнаем металлы и их сплавы среди других веществ. Металлы блестят потому, что отражают от своей поверхности световые лучи, а не пропускают их, как стекло, и почти не поглощают, как сажа.

Металлы отражают не только видимый свет, но и невидимые радиоволны. Это свойство металлов используется в радиотелескопах, улавливающих радиоизлучения космоса, и в радиолокаторах, обнаруживающих самолеты на расстоянии сотен километров от наблюдателя.

Будучи общими всем металлам, перечисленные свойства проявляются у них в неодинаковой степени. Так, металлический блеск наиболее ярко проявляется у серебра; оно и применяется в производстве зеркал. Смотрясь в зеркало, мы видим свое отражение от тончайшего слоя серебра, нанесенного на заднюю поверхность стеклянной пластинки.

По электропроводности первое место среди всех веществ занимает то же серебро, к нему примыкают медь и алюминий. В электротехнике из-за дороговизны серебра в качестве материала для электропроводки используются медь и алюминий. Без этих металлов невозможно было бы передавать электрическую энергию на расстояния в десятки, сотни километров от вырабатывающей ее электростанции лишь с незначительными потерями в пути.

Электропроводность остальных металлов изменяется в очень широких пределах. Например, у вольфрама она в 340 раз меньше, чем у серебра. Техника нуждается и в таких металлах с умеренной электропроводностью. Они необходимы в электронагревательных устройствах. Нить накала электролампочки нагревается за счет сопротивления, оказываемого ею электрическому току, поэтому для изготовления ее нужен металлический материал с малой электропроводностью. Сейчас нити накала изготовляются главным образом из вольфрама.

Теплопроводность чистых металлов пропорциональна их электропроводности. Поэтому по теплопроводности металлы располагаются в такой же ряд как и по электропроводности: серебро, за ним следуют медь и алюминий, далее прочие металлы.

Основное механическое свойство металлов — пластичность — на практике проявляется в том, что под ударами молота металлы не дробятся на куски, а расплющиваются — они ковки. Первое место среди металлов по ковкости занимает золото. Его можно прокатывать в тончайшие полупрозрачные листы и вытягивать в тончайшую, невидимую глазом проволоку.

Из неспецифических для металлов физических свойств наибольший практический интерес имеют плотность, температура плавления и твердость.

Плотность металла тем меньше, чем меньше его атомный вес и чем больше радиус атома (почему?). Она у металлов изменяется в очень широких пределах — от 0,5 у лития до 22 у осмия. Металлы с плотностью ниже 5 называются легкими металлами. Из конструкционных металлов к легким относятся магний, алюминий и титан; они используются, главным образом, в строительстве транспорта, титан — в самолетах, летающих со сверхзвуковыми скоростями. Трение о воздух при таких скоростях вызывает сильное разогревание обшивки самолета, а прочность металлов при нагреве сильно снижается, прежде чем станет равной нулю, когда металл расплавится. У титана высокая температура плавления и снижения прочности у него в условиях скоростных полетов, в отличие от алюминиевых сплавов, не происходит.

В тех редких случаях, когда от металлического материала требуется возможно большая плотность (дробь, пули), используется свинец, хотя его плотность примерно вдвое меньше, чем у наиболее тяжелых, но дорогих металлов.

Свойства металлов: температура плавления, прочность, твердость — зависят главным образом от прочности металлической связи. Она у разных металлов неодинакова, и особенно велика у тяжелых металлов с достраивающимся предпоследним электронным слоем атома, поэтому такие металлы отличаются высокой тугоплавкостью и высокой твердостью.

Температуры плавления металлов изменяются в очень широких пределах: от -39°С у ртути до 3410°С у вольфрама. Ртуть как единственный жидкий при обычных условиях металл применяется в измерительных приборах, вольфрам — во всех случаях, когда требуется металлический материал, противостоящий особенно высоким температурам, например для нитей накала электролампочек.

В широких пределах изменяется и твердость металлов: щелочные металлы мягки, как воск, а самые твердые из металлов, к которым относятся вольфрам и хром, не поддаются обработке закаленными напильниками.

К числу общих свойств металлов относится их растворимость друг в друге. Такие растворы металлов называются сплавами. Для каждого металлического изделия и каждой металлической детали подбирается или создается «по заказу» такой материал, который наилучшим образом удовлетворяет назначению изделия или детали. Среди чистых металлов такого материала, в котором сочетались бы все заданные свойства, обычно не находится, и тогда мы обращаемся к сплавам.

Так, в электролампочке, кроме вольфрама и цинка — из него изготовлен цоколь,- мы находим два сплава. Припой — легкоплавкий сплав свинца с сурьмой и оловом, из него состоит контакт лампочки и спай патрона с проволочкой, подводящей ток к нити накала, сама же эта проволочка из платинита — сплава железа с никелем, расширяющегося при нагревании одинаково со стеклом, вследствие чего она может впаиваться в стекло и при нагревании в месте спая не трескается (рис. 49).


Рис. 49. В состав электролампочки входит семь металлов

Общая характеристика металлов

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН — )2, (Li + )2СO3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v ). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga2, в твердом состоянии хлориды алюминия и ртути (II) АlСl3 и НgСl2 содержат сильно ковалентные связи, но в растворе АlСl3 диссоциирует почти полностью, а НgСl2 — в очень малой степени (да и то на ионы НgСl + и Сl — ).

Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl2 – t° → NiCl2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H2 → 2LiH

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2) Металлы средней активности окисляются водой при нагревании до оксида:

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+ )

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО2 и SО2; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н2 (водородная коррозия).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь), имеют высокую коррозионную стойкость.

Общие способы получения металлов в промышленности:

электрометаллургия, т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия, т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия, т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

Общие физические и химические свойства металлов

Общие физические свойства металлов

Благодаря наличию свободных электронов (“электронного газа”) в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность – способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение “электронного газа”.

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность – у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий – литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются “легкими металлами”.

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

1. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl2 – t° → NiCl2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H2 → 2LiH

2. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

3. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2) Металлы средней активности окисляются водой при нагревании до оксида:

3) Неактивные (Au, Ag, Pt) – не реагируют.

4. Вытеснение более активными металлами менее активных металлов из растворов их солей:

В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем – дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) – это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте – металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+ )

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg – только серной (концентрированной) и азотной кислотами, а Рt и Аи – «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО2 и SО2; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н2 (водородная коррозия).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь), имеют высокую коррозионную стойкость.

Физические свойства металлов

Положение в таблице Менделеева

Металлы занимают I-II группы и побочные подгруппы III-VIII групп. Металлические свойства, т.е. способность отдавать валентные электроны или окисляться, увеличиваются сверху вниз по мере увеличения количества энергетических уровней. Слева направо металлические свойства ослабевают, поэтому наиболее активные металлы находятся в I-II группах, главных подгруппах. Это щелочные и щелочноземельные металлы.

Определить степень активности металлов можно по электрохимическому ряду напряжений. Металлы, стоящие до водорода, наиболее активны. После водорода стоят слабоактивные металлы, не вступающие в реакцию с большинством веществ.

Рис. 1. Электрохимический ряд напряжений металлов.

Строение

Вне зависимости от активности все металлы имеют общее строение. Атомы в простом металле расположены не хаотично, как в аморфных веществах, а упорядоченно – в виде кристаллической решётки. Удерживает атомы в одном положении металлическая связь.

Такой вид связи осуществляется за счёт положительно заряженных ионов, находящихся в узлах кристаллической ячейки (единицы решётки), и отрицательно заряженных свободных электронов, которые образуют так называемый электронный газ. Электроны отделились от атомов, превратив их в ионы, и стали перемещаться в решётке хаотично, скрепляя ионы вместе. Без электронов решётка бы распалась за счёт отторжения одинаково заряженных ионов.

Различают три типа кристаллической решётки. Кубическая объемно-центрированная состоит из 9 ионов и характерна хрому, железу, вольфраму. Кубическая гранецентрированная включает 14 ионов и свойственная свинцу, алюминию, серебру. Из 17 ионов состоит гексагональная плотноупакованная решётка цинка, титана, магния.

Рис. 2. Виды кристаллических решёток.

Свойства

Строение кристаллической решётки определяет основные физические и химические свойства металлов. Металлы блестят, плавятся, проводят тепло и электричество. Промышленность и металлургия нашли применение физическим свойствам металлов в изготовлении деталей, фольги, корпусов машин, зеркал, бытовой и промышленной химии. Особенности металлов и их использование представлены в таблице физических свойств металлов.

Свойства

Особенности

Примеры

Применение

Способность отражать солнечный свет

Наиболее блестящими металлами являются Hg, Ag, Pd

Лёгкие – имеют плотность меньше 5 г/см 3

Na, K, Ba, Mg, Al. Самый лёгкий металл – литий с плотностью 0,533 г/см 3

Изготовление облицовки, деталей самолётов

Тяжёлые – имеют плотность больше 5 г/см 3

Sn, Fe, Zn, Au, Pb, Hg. Самый тяжёлый – осмий с плотностью 22,5 г/см 3

Использование в сплавах

Способность изменять форму без разрушений (можно раскатать в тонкую фольгу)

Наиболее пластичные – Au, Cu, Ag. Хрупкие – Zn, Sn, Bi, Mn

Формовка, сгибание труб, изготовление проволоки

Мягкие – режутся ножом

Изготовление мыла, стекла, удобрений

Твёрдые – сравнимы по твёрдости с алмазом

Самый твёрдый – хром, режет стекло

Изготовление несущих конструкций

Легкоплавкие – температура плавления ниже 1000°С

Hg (38,9°С), Ga (29,78°С), Cs (28,5°С), Zn (419,5°C)

Производство радиотехники, жести

Тугоплавкие – температура плавления выше 1000°С

Cr (1890°С), Mo (2620°С), V (1900°С). Наиболее тугоплавкий – вольфрам (3420°С)

Изготовление ламп накаливания

Способность передавать тепло другим телам

Лучше всего проводят ток и тепло Ag, Cu, Au, Al

Приготовление пищи в металлической посуде

Способность проводить электрический ток за счёт свободных электронов

Передача электричества по проводам

Рис. 3. Примеры применения металлов.

Что мы узнали?

Из урока 9 класса узнали о физических свойствах металлов. Кратко рассмотрели положение металлов в периодической таблице и особенности строения кристаллической решётки. Благодаря строению металлы обладают пластичностью, твёрдостью, способностью плавиться, проводить электрический ток и тепло. Свойства металлов неоднородны. Различают лёгкие и тяжёлые металлы, лёгкоплавкие и тугоплавкие, мягкие и твёрдые. Физические свойства используются для изготовления сплавов, электрических проводов, посуды, мыла, стекла, конструкций различной формы.

Металл: что это такое, его физические свойства, из чего состоит

Обнаружение общих физических и химических свойств металлов и сплавов привело к повсеместному использованию материала. Со временем ученые начали подробно изучать его характеристики, а также создавать различные методы металлообработки, которые увеличивают прочность, улучшают кристаллическую решетку. На настоящий момент есть такие составы, которые используются при кораблестроении.

Все больше сфер жизни не может обойтись без металлических элементов – от бытовой ложки или авторучки до сложных механических узлов и микросхем. Но обыватели часто не понимают, что за вещество мы используем, и какие особенности дают ему такую распространенность. В статье мы подробно поговорим про это.

Что это такое – металл

Древнегреческое слово metallion как раз обозначает «выкапывать из земли» – добытое из горной руды. На настоящий момент известно 96 значений в чистом виде и неограниченное количество сплавов. Все они отличаются от неметаллов повышенными прочностными качествами и проводимостью, поэтому из них делают провода. На первый взгляд отличить металлический образец от каменного или иного можно по специфическому блеску.

Физические свойства

В условиях комнатной температуры и без применения давления все вещества обладают твердым состоянием. Но есть галлий, он уже при 30 градусах тепла начинает деформироваться, тает в руках. Можно отметить характеристики:

  • Высокая пластичность. Хрупкие только марганец, олово и цинк.
  • Могут быть легкие и тяжелые. Сравни алюминий с осмием.
  • Температура плавления очень большая. Есть и исключения, например, ртуть, именно по этой причине ее используют в классических термометрах.
  • Цвет – серый, серебристый, голубоватый. Редкими являются цветные изделия, например, желтые или красные.
  • Увеличенная проводимость тепла и электричества, особенно у меди, поэтому имеют популярность медные провода.

Основные химические свойства металлов

В данной категории нет общих правил, так как все они разделяются на множество подгрупп по уровню активности – щелочные, актиноиды, полуметаллы и другие. Многие взаимодействуют с водой, почти все – с кислородом (кроме золота и платины),происходит окисление. Процесс проходит в нормальных условиях, если в составе много щелчки, только при нагреве – если нет. Также почти все элементы вступают в реакцию с серой и хлором.

Признаки

Перечислим черты, по которым обыватель может отличить вещества этой категории от неметаллов:

  • леск.
  • Хорошая проводимость тепла и электричества.
  • Прочность.
  • Подвергаются ковке и свариванию.
  • Кристаллическое строение тела.
  • Высокая температура плавления и кристаллизации.

Классификация и виды металлов

Есть чистые, однокомпонентные структуры и сплавы. Самым классическим примером можно назвать различные виды стали. Они различаются по ГОСТу в соответствии с добавлением легирующих добавок. Чем больше содержание углерода, тем крепче материал. Также есть общепринятое разграничение, ниже представим подтипы.

Черные

Их добывают из металлической руды. В производстве они занимают 90% от всего сырья. Обычно это чугуны и стали. Для изменения характеристик добавляют большее или меньшее количество углерода и легирующие добавки: медь, кремний, хром, никель.

Одним из очень популярных подвидов является нержавейка, которая отличается своим блеском поверхности и уникальными свойствами – легкостью, высокой прочностью и устойчивостью к влажности, температурным перепадам.

Что относится к цветным металлам

Второе название – нежелезные, то есть сплавы не содержат в себе железа, а состоят из более дорогостоящих материалов. Вещества имеют различный цвет, отличаются уникальными качествами:

  • долговечность;
  • длительное сохранение свойств;
  • образование оксидной пленки, которая препятствует коррозии.

Благодаря этому, определенные разновидности можно использовать в медицине, ювелирном деле, химической промышленности, при изготовлении электрических проводов. К цветмету относится алюминий, цинк, олово, свинец, никель, хром, серебро, золото и другие.

Медь и ее сплавы являются популярными металлами

Медная руда была обработана человеком одна из первой, потому что она подвергается холодному методу ковки и штамповки. Податливость привела к востребованности повсеместно. Кислород в составе приводит к красному отливу. Но уменьшение валентности в различных соединениях приведет к желтому, зеленому, синему цвету. Привлекательным качеством считается отличная теплопроводность – на втором месте после серебра, поэтому она применяется для проводов. Соединения могут быть:

  • твердыми – в сочетании с железом, мышьяком, цинком, фосфором;
  • с плохой растворимостью с висмутом, свинцом;
  • хрупкими – с серой или кислородом.

К металлам относятся алюминий и сплавы

Al открыт в 1825 году и отличается легкостью и простотой в металлообработке. Производится из бокситов, при этом запасы этой горной породы практически неиссякаемы. Далее элемент соединяют в различных пропорциях с медью, марганцем, магнием, цинком, кремнием. Реже с титаном, литием, бериллием. Особенности в зависимости от добавок:

  • хорошая свариваемость;
  • устойчивость к коррозии;
  • высокая усталостная прочность;
  • пластичность.

Его применяют для изготовления ювелирных изделий, столовых приборов, а также для стекловарения, в пищевой и военной промышленности, для создания ракет и для производства водорода и тепла в алюмоэнергетике.

Все о металлах магний, титан и их сплавах

Mg – самое легкое вещество из этой группы. Не обладает прочностью, но есть достоинства, например, пластичность, химическая активность. Благодаря высокой конструкционной способности его добавляют в составы, чтобы увеличивать свариваемость, простоту металлообработки режущим ножом. Необходимо учитывать, что магний очень восприимчив к ржавлению.

Титан имеет похожие качества – легкость, пластичность, серебристый цвет. Но антикоррозийная пленка появляется при первом соприкосновении с кислородом. Отличительные особенности – низкая теплопроводность, электропроводность, отсутствие магнитизма. Металл, содержащий титан, – это вещество, используемое для авиационной, химической, судостроительной промышленности.

Антифрикционные сплавы

Характерная особенность этой группы – удобство применения при механических воздействиях. Они практически не создают трения, а также снижают его у других композитов. Очень часто они выступают в качестве твердой смазки для узлов, например, для подшипников. В составе обычно бывает фторопласт, латунь, бронза, железографит и баббит.

Мягкие

Это те, у которых ослаблены металлические связи. По этой причине они имеют более низкую температуру плавления и кипения, просто деформируются. Иногда можно одним нажатием пальца сделать вмятину, ногтем оставить царапину К ним относятся: медь, серебро, золото, бронза, свинец, алюминий, цезий, натрий, калий, рубидий и другие. Одним из наиболее мягких является ртуть, она находится в природе в жидком состоянии.

Что значит твердый металл

В природе такая руда встречается крайне редко. Порода находится у упавших метеоритов. Один из наиболее популярных – хром. Он тугоплавкий и легко поддается металлообработке. Еще один элемент – вольфрам. Он очень плохо плавится, но при правильной обработке используется в осветительных приборах благодаря устойчивости к теплу и гибкости.

Металлические материалы в энергетике

Мы бы не имели такую развитую электросеть и массу приборов, потребляющих электричество, если бы ряд веществ не отличались наличием свободных электронов, положительных ионов и высокой проводимостью. Провода делают из свинца, меди и алюминия. Отлично бы подошло серебро, но его редкость влияет на стоимость, поэтому редко используется.

Особенности черных вторичных металлов

Это отходы, которые образуются в результате одного из этапа металлообработки – ковки, резки. Это могут быть обрезки или стружки. Они отправляются в сталеплавильные печи, но перед этим должны пройти проверки по ГОСТу. Лом называют чермет, его различают на стальной и чугунный по цене. Его использование очень востребовано вместо обработки руды.

Щелочноземельные сплавы

Это твердые вещества, которые имеют высокую химическую активность. В чистом виде встречаются очень редко, зато применяются в соединениях. Их значение нельзя переоценить с точки зрения анатомии человека и животного. Магний и кальций – необходимые микроэлементы.

Понятие щелочной металл

Они способны растворяться в воде, образуя щелочь. Из-за своей повышенной химической активности (вступление в реакцию происходит с бурным действием, воспламенением, выделением газа, дыма) в природе почти не встречается. Ведь на внешнем уровне всего один электрон, который легко отдается любому веществу. Гидроксиды очень важны в промышленности.

Общая характеристика материалов из d- и f-семейств

Это переходные элементы, которые могут являться как окислителями, так и восстановителями. Свойства зависят от среды, в которой они находятся. Но есть и общие:

  • на внешнем уровне много электронов;
  • несколько степеней окисления;
  • увеличенная валентность;
  • прочность;
  • тягучесть;
  • ковкость.

Из чего состоят побочные подгруппы металлов системы Менделеева

По сути это разновидности предыдущей категории – переходные элементы. Это линейка от скандия до цинка. Они часто выплавляются и обладают фактически такими же характеристиками, как и вышеперечисленные материалы из d- и f-семейств.

Сплавы

Чистые слитки, добываемые из руды, используются максимально редко. Это обусловлено как дороговизной, так и недостаточно хорошими качествами (чтобы исправить, добавляют углерод, легирующие добавки). Иногда в природе встречаются соединения, и нужно только подкорректировать состав. Самые известные:

  • латунь;
  • бронза;
  • сталь;
  • чугун.

Сравнение свойств

Вторая часть элементов в периодической системой отличается многообразием характеристик, поэтому почти невозможно привести полную сводную таблицу. Мы предлагаем таблицу, на которой представлено 4 отличительные черты:

Признаки Металлы Неметаллы
Положение в П. С. Под диагональю бор-астат Над ней
Строение атома Большой атомный радиус, чисто электронов на последнем слое — от 1 до 3 Маленький, от 4 до 7 — соответственно
Физические св-ва Электропроводность, теплопроводность, блеск, ковкость, пластичность, по агрегатному состоянию, в основном, твёрдые Диэлектрики, неблестящие, хрупкие, газы, жидкости и летучие твёрдые вещества
Кристаллические решетки Металлическая Молекулярная, атомная
Химические св-ва Восстановители Окислительные (иногда восстанов-ли)

Мы рассказали про металл, что это за материал, как он используется. Если вам нужны станки по металлообработке, закажите их в компании «Роста».

§ 9. Физические свойства металлов

Из курса химии 8 класса вы уже имеете представление о природе химической связи, существующей в кристаллах металлов, — металлической связи. Напомним, что в узлах металлических кристаллических решёток располагаются атомы и положительные ионы металлов, связанные посредством обобществлённых внешних электронов, принадлежащих всему кристаллу. Эти электроны компенсируют силы электростатического отталкивания между положительными ионами и тем самым связывают их, обеспечивая устойчивость металлической решётки.

Металлическая связь обусловливает все важнейшие физические свойства металлов: пластичность, электро- и теплопроводность, металлический блеск и другие свойства, характерные для этого класса простых веществ.

Пластичность — это свойство вещества изменять форму под внешним воздействием и сохранять принятую форму после прекращения этого воздействия.

Способность расплющиваться от удара или вытягиваться в проволоку под действием силы составляет важнейшее механическое свойство металлов. Оно лежит в основе такой уважаемой большинством народов мира профессии, как профессия кузнеца. Недаром покровителем кузнечного дела у разных народов был бог огня: у греков — Гефест, у римлян — Вулкан, у славян — Сварог.

Пластичность металлов обусловлена способностью одних слоёв атом-ионов в кристаллах под внешним воздействием легко смещаться (как бы скользить) по отношению к другим слоям без разрыва связей между ними (рис. 26).

Рис. 26.
Смещение слоёв в металлической кристаллической решётке при механическом воздействии

Наиболее пластичны золото, серебро и медь. Например, из золота можно изготовить «золотую фольгу» толщиной 0,003 мм, которую используют для золочения изделий (рис. 27).

Рис. 27.
Высокую пластичность золота используют для золочения интерьеров дворцов

Высокая электропроводность большинства металлов обусловлена присутствием в их кристаллических решётках подвижных электронов, которые направленно перемещаются под действием электрического поля (рис. 28).

Рис. 28.
В металлических кристаллических решётках подвижные электроны под действием электрического поля перемещаются, создавая электрический ток

При нагревании колебательные движения ионов в кристалле усиливаются, что затрудняет направленное движение электронов и ведёт к снижению электрической проводимости. При охлаждении электропроводность металлов увеличивается и вблизи абсолютного нуля переходит в сверхпроводимость. Наибольшую электропроводность имеют серебро и медь, наименьшую — марганец, свинец, ртуть и вольфрам.

Такое свойство, как теплопроводность металлов, также связано с высокой подвижностью свободных электронов: сталкиваясь с колеблющимися в узлах решётки ионами, электроны обмениваются с ними энергией. С повышением температуры колебания ионов при посредстве электронов передаются другим ионам, и температура всего металлического предмета быстро выравнивается.

Для гладкой поверхности металлов характерен металлический блеск — результат отражения световых лучей. В порошкообразном состоянии большинство металлов теряет блеск, приобретая чёрную или серую окраску, и только алюминий и магний сохраняют блеск в порошке. Из алюминия, серебра и палладия, обладающих наиболее высокой отражательной способностью, изготовляют зеркала, в том числе и применяемые в прожекторах.

Для большинства металлов характерен белый или серый цвет. Золото и медь окрашены соответственно в жёлтый и жёлто-красный цвет.

Из других физических свойств металлов наибольший практический интерес представляют твёрдость, плотность и температура плавления.

Для всех металлов (кроме ртути) при обычных условиях характерно твёрдое агрегатное состояние. Однако твёрдость их различна. Наиболее твёрдые — металлы побочной подгруппы VI группы (VIB группы) Периодической системы Д. И. Менделеева. Так, хром по твёрдости приближается к алмазу. Самые мягкие — металлы главной подгруппы I группы (IA группы) Периодической системы Д. И. Менделеева — щелочные металлы. Например, натрий и калий легко режутся ножом.

По плотности металлы делят на лёгкие (плотность меньше 5 г/см 3 ) и тяжёлые (плотность больше 5 г/см 3 ). К лёгким относят щелочные, щёлочноземельные металлы и алюминий. Из переходных металлов сюда включают скандий, иттрий и титан. Эти металлы, благодаря лёгкости и тугоплавкости, всё шире применяют в различных областях техники.

Самый лёгкий металл — это литий (р = 0,53 г/см 3 ). Самый тяжёлый — осмий (р = 22,6 г/см 3 ).

Лёгкие металлы обычно легкоплавки, галлий может плавиться уже на ладони руки, а тяжёлые металлы — тугоплавки. Наибольшей температурой плавления, которая равна 3380 °С, обладает вольфрам. Это свойство вольфрама используют для изготовления ламп накаливания (рис. 29, 1). Кроме него в конструкцию лампы входят ещё семь металлов.

Рис. 29.
Лампы, при изготовлении которых используют различные металлы: 1 — лампа накаливания; 2 — галогенная лампа; 3 — люминесцентная лампа; 4 — светодиодная лампа

В Российской Федерации в настоящее время, как и ранее в Евросоюзе и США, на государственном уровне принято решение о замене привычных ламп накаливания на более экономичные и долговечные современные лампы, например галогенные, люминесцентные и светодиодные. Галогенная лампа (рис. 29, 2) — это та же лампа накаливания с вольфрамовой нитью, заполненная инертными газами с добавкой паров галогенов (брома или иода). Люминесцентные (рис. 29, 3) — это хорошо знакомые вам лампы дневного света, имеющие один существенный недостаток — они содержат ртуть, а потому нуждаются в соблюдении особых правил утилизации на специальных пунктах приёма. Светодиодные лампы (рис. 29, 4) — самые экономичные и самые долговечные (срок работы до 100 тыс. ч), но пока и самые дорогие из ламп.

Рис. 30.
Металлы условно делят на две группы: чёрные (а — чугун; б — сталь); цветные (в — медь; г — алюминий)

В технике, как вы уже знаете, металлы делят на чёрные (железо и его сплавы) и цветные (все остальные, более подробно о них будет рассказано в следующем параграфе) (рис. 30). Золото, серебро, платину и некоторые другие металлы относят к драгоценным металлам (рис. 31).

Рис. 31.
Драгоценные металлы: золото (1, 2); платина (3); серебро (4, 5);

Оцените статью