Способы сварки металлов большой толщины

Электрошлаковый и электродуговой методы сварки металлических деталей с толстыми стенками. Некоторые особенности соединения толстостенных труб.
Содержание

Способы сварки металлов большой толщины

Основные способы сварки толстого металла. Классификация сварных швов по способу наложения

Для сварки толстого металла в основном используются два метода – электрошлаковый и электродуговой. Оба этих метода позволяют получить качественный шов и не требуют дорогостоящих дополнительных материалов.

Электрошлаковая сварка

Электрошлаковая сварка (ЭШС) позволяет сваривать металлические детали толщиной до 60 см. Принцип ЭШС состоит в том, что в зазор между торцами двух свариваемых металлических деталей помещают шлаковую массу. Эта масса расплавляется электрической дугой, создаваемой между электродом и металлическими деталями. После расплавления шлака дуга гаснет, а через шлаковую массу протекает ток, который при правильно подобранных параметрах сварки равномерно нагревает сварочную ванну до высоких температур.

В шлаковую массу добавляется присадочный материал, который плавится вместе со шлаком и краями соединяемых деталей. Поскольку расплавленный металл тяжелее шлака, то он опускается вниз зазора и там застывает. Расплавленная масса же поднимается вверх. В результате этого процесса происходит сварка вертикального зазора.

Для того чтобы расплав не вытекал за пределы зазора, сбоку с двух сторон ставятся специальные пластины – ползуны. Они охлаждаются водой и постепенно перемещаются вверх.

Схема электрошлаковой сварки

Существует три метода осуществления ЭШС:

  1. В расплав непрерывно подается присадочный электрод, который расположен в горизонтальной плоскости.
  2. Используются пластинчатые электроды, которые заменяют собой ползуны. Благодаря перекрытию зазора, создается эффективный расплав, что позволяет соединить зазоры деталей без добавления присадки.
  3. Объединение первых двух методов. При этом используются пластинчатый и плавящийся электроды.

Преимущества и недостатки ЭШС

Основные достоинства ЭШС:

  • защита шва от воздействия атмосферы жидким шлаком;
  • малая чувствительность процесса к изменению величины тока и даже его кратковременному прерыванию;
  • сварка толстого металла за один проход;
  • возможность сваривать необработанные торцы деталей;
  • малый расход электроэнергии и дешевизна шлаков;
  • высокий КПД.
  • возможна сварка только вертикальных швов или швов под острым углом к вертикали;
  • при прерывании процесса возникают дефекты, которые нельзя исправить;
  • шов имеет крупнозернистую структуру, что ограничивает применение изделия при низких температурах (шов становится ломким);
  • для организации ЭШС необходимо иметь довольно большое количество приспособлений.

Оборудование

Для выполнения операций ЭШС используются автоматы или полуавтоматы. Второй тип оборудования используется редко, так как вручную перемещать тяжелое оборудование по вертикали для человека довольно трудно.

Автоматы для ЭШС обычно включают:

  • автоматически двигающийся сварочный аппарат с медными ползунами;
  • источник питания;
  • устройства подачи флюса и проволоки;
  • систему управления.

В зависимости от конструкции автоматы для ЭШС могут быть подвесные или самоходные (рельсового или безрельсового типа).

Электродуговая сварка

Электродуговая сварка (ЭДГС) представляет собой вид неразъемного соединения деталей, получаемого путем плавления металла электрической дугой, возникающей при подаче на электрод и металл напряжения от источника тока. При воздействии на соединяемые детали такой дуги образуется сварочная ванна из расплавленного металла, после остывания и застывания которой формируется шов, соединяющий детали.

При сварке изделий большой толщины (более 20 мм) с помощью ЭДГС невозможно проварить всю толщину изделия. Поэтому в этом случае используется многослойное наложение швов. Перед тем как начать сварку толстого металла, требуется подготовить его торцы. Чаще всего кромки торцов стачиваются под некоторым углом. Между деталями оставляют зазор.

При выполнении первого корневого (соединительного) шва используется тонкий электрод толщиной в 1-3 мм. Его использование позволяет зафиксировать детали и избежать прожога.

Последующее заполнение сварочного шва осуществляется электродом большего диаметра. При этом слой должен прокладываться по неостывшему предыдущему слою. Толщина слоя для достаточного прогрева не должна быть больше 4-5 мм.

Классификация ЭДГС

ЭДГС бывает следующих типов:

  • ручная;
  • полуавтоматическая;
  • автоматическая.

При ручной ЭДГС сварщик вручную перемещает электрод, в результате чего образуется сварной шов. При полуавтоматической сварке присадочная проволока подается автоматически, а электрод передвигается вручную. При автоматической сварке и проволока, и электрод передвигаются автоматически.

Оборудование

Наиболее распространенным является ручная ЭДГС. При выполнении такого рода сварки используются:

  • сварочный аппарат;
  • ручной инструмент сварщика;
  • приспособления для облегчения сварки.

Сварочный аппарат является, в первую очередь, источником питания для электрической дуги.

В качестве источников питания при ЭДГС используются сварочные трансформаторы, выпрямители (инверторы) или генераторы.

Сварочный трансформатор предназначен для понижения напряжения сети в более низкое напряжение горения дуги и обеспечения необходимого тока. Сварочные выпрямители состоят из понижающего трансформатора и полупроводникового выпрямителя. Они питают дугу постоянным током. Генераторы обеспечивают питание электродуги путем преобразования механической энергии в электрическую.

Кроме источника питания, в состав сварочного аппарата входят электрод, держатель для электрода и провода, подключающие источник питания к сварочной ванне. Электрод обычно представляет собой присадочный материал с обмазкой, предназначенной для защиты сварочной ванны от воздействия внешней атмосферы. Держатели для электрода бывает винтового или зажимного типа.

Примерная стоимость электрододержателей на Яндекс.маркет

В качестве приспособлений сварщик должен использовать защитную маску, которая фильтрует УФ- и ИК-излучения дуги, респиратор и специальную одежду. Кроме того, в качестве ручного инструмента сварщику положено иметь молоток, зубило, металлическую щетку.

Сварные швы

При сваривании толстостенных деталей могут возникнуть поры или трещины. Для их предотвращения при сварке применяют методы:

  • «горка»;
  • блочный;
  • каскадный.

В первом случае вначале на участке стыка в 200-300 мм формируют слой №1. После очистки его от окалины на него наваривают слой №2, который в 2 раза длиннее первого. Далее отступают на 200-300 мм от начала слоя №2 и наваривают слой №3. Таким образом заполняют весь сварочный шов швами с двух сторон от слоя №1.

При сварке металла толщиной от 20 мм используется каскадный метод. По сути, этот метод является разновидностью метода «горка». В этом случае весь шов делится на отрезки в 20 см. Сначала проваривается самый нижний участок в 20 см. Затем поверх первого слоя кладется второй слой длиной 40 см. Поверх второго слоя кладется третий слой длиной 60 см. Таким образом укладывают слои до заполнения шва над участком №1. После этого от участка №1 варят короткие швы в обе стороны. Благодаря этому, зона сварки будет все время нагрета, и там не образуются трещины.

При блочном методе шов сначала варят по отдельным участкам (блокам), а промежутки между ними заваривают до окончания завершения сварки всего шва.

Особенности сварки труб с толстыми стенками

Трубы с толстыми стенками используются в различных областях народного хозяйства и промышленности. Например, в трубопроводе «Турецкий поток» используются трубы с толщиной стенок в 39 мм, а в трубопроводах высокого давления могут использоваться трубы с толщиной стенок до 52 мм.

Если толщина стенок труб превышает 20 мм, то сварка таких труб может осуществляться с использованием слоев с увеличенной толщиной. Такой метод позволяет увеличить прочность соединения на 10-15%. При этом сварка таких труб должна осуществляться одновременно 2 сварочными аппаратами – один из них наносит обычный слой, а второй – толстый слой.

Как показал опыт, уже имеются результаты по сварке стыков с увеличенной толщиной слоя, при которых стыки в 45 мм были сварены за 3 прохода при толщине одного слоя в 15 мм. При этом стык имел два типа скоса кромок, один из которых Y-образный, а другой – двухступенчатый.

Особенности сварки толстого металла

Для изделий из толстого металла применяют в основном электродуговую и электрошлаковую сварку. У них высокая производительность, имеют малую область нагрева, соответственно создают небольшие внутренние напряжения, не требуют дорогостоящих расходных материалов.

Электрошлаковая

В электрошлаковой сварке электротоком нагревается шлак, который расплавляет находящийся рядом металл и защищает шов от окисления и насыщения водородом. Технология позволяет производить только вертикальные швы снизу вверх. Отклонение от вертикали допускается в пределах 30 градусов.

С двух сторон свариваемых толстых листов из металла устанавливаются медные пластины-ползуны, которые охлаждаются водой. Между свариваемыми листами оставляется зазор. Обработка стыков не требуется.

Стыки и ползуны образуют сварочную ванну. При внесении в нее электрода шлак разогревается, металл начинает плавиться, сваривание происходит без создания дуги.

По мере образования шва ползуны передвигаются вверх. Все происходит за один проход. Сварить можно толстый металл до 60 см. Шов должен образоваться за один проход иначе возникают неустранимые дефекты. Технология позволяет пользоваться электродом различной формы.

Электродуговая

Сварка металла большой толщины (20 мм и более) из-за невозможности проварить за один проход всю толщу изделия имеет свою специфику. Кромки свариваемых поверхностей нужно подготовить.

Для этого кромки стачиваются под углом. При соединении деталей в сечении должна получиться буква V. Иногда, одну кромку стачивают под углом, а вторую ступеньками. Между свариваемыми деталями оставляют зазор, в верхней части должна получиться канавка шириной 10-15 мм и больше.

Ширина канавки зависит от толщины металла. При сварке металла разной толщины край более толстого стачивается до сечения тонкого.

При сварке встык и наличии пересекающихся швов возникают напряжения, приводящие к деформации и даже разрушению изделия. Особенно это сильно проявляется при низких температурах, когда металл теряет свои пластические свойства.

Жесткое закрепление деталей в оснастке также вызывает чрезмерные напряжения. К этому же приводят и длинные швы с большим сечением.

Сваривать толстый металлический лист требуется так, чтобы время между наложением последующих слоев было минимальным. Во избежание напряжений необходимо следующий шов прокладывать по горячему слою. Толщина слоев должна находиться в пределах 4-5 мм, это обеспечит достаточный прогрев.

При сваривании толстого металла из-за большой глубины сварочной ванны увеличивается вероятность образования пор. Чтобы этого не произошло, применяется каскадный способ сварки или метод «горка».

Во время сварки возникает поперечная усадка, которая может достигать 4 мм при толщине металла 40-50 мм. При сварке толстых листов необходимо делать прихватки длиной 2-3 см через каждые 30-50 см.

Для уменьшения напряжений, можно выполнять работу двумя сварщиками одномоментно. Прогрев толстого металла до 150-200 ⁰C также снижает внутренние напряжения, замедляет кристаллизацию, что приводит к более длительному времени выделения газов и соответственно уменьшению количества пор.

Виды швов и методы их наложения

Швы по положению и типу соединения делятся на несколько видов, от которых зависят настройки сварки.

По положению в пространстве делятся на:

  1. горизонтальные;
  2. вертикальные;
  3. потолочные;
  4. нижние.

Они могут соединяться внахлест, встык, кроме этого бывают тавровые и угловые соединения. Существует несколько методов наложения швов при сварке толстого металла.

Способы наложения

Метод сварки толстого металла каскадом заключается в следующем: весь участок разбивается на отрезки по 20 см. Сначала проваривается самый нижний участок, который называется корневым. Его длина примерно 20 см. Поверх корневого внахлест, не прерывая дуги, делают новый слой. Его общая длина будет 20 +20=40 см.

Лучше всего метод сварки понятен на схеме. Он применяется к толстым металлам, когда толщина листа более 20 мм. При таком способе сварки слои накладываются на неостывший металл, что позволяет уменьшить деформации и внутренние напряжения.

Сварка толстого металла горкой подобна каскаду, только работают два сварщика от середины к краям шва.

Они варят каскадом по длине и по ширине. Задача состоит в том, чтобы при накладывании следующего слоя место контакта было горячим.

Длина

Швы подразделяют на короткие длиной до 25 см, средние – до 1 м, и длинные – свыше 1 м. Короткие прокладывают за один проход.

При сваривании толстого металла приходится делать несколько слоев – по одному за каждый проход, так как каждый последующий слой становится все шире, то сварщик делает зигзагообразные или спиралевидные движения поперек шва. Таким образом, оплавляются кромки свариваемых деталей.

Такая технология обычно применяется при стыковом соединении толстого металла. Средние и длинные швы накладываются с использованием способов каскада и горки.

При сварке угловых и тавровых соединений применяют многослойный многопроходный двусторонний шов. Сначала формируется корневой шов. Затем поверх него прокладывается второй слой со смещением к одному из стыков, потом третий со смещением ко второму стыку с его оплавлением.

Четвертый идет поверх второго слоя, оплавляя кромку детали. Пятый проходит рядом с четвертым, а шестой слой поверх третьего, оплавляя кромку второй детали. Седьмой слой накладывают поверх четвертого, пятого и шестого слоев.

С обратной стороны шва на первый слой и кромки изделия наносится восьмой завершающий слой.

Параметров сварочного аппарата

Уменьшение сварочного тока уменьшает глубину сварочной ванны и наоборот. Ширина же ее практически не изменяется. Требуемая сила тока зависит от толщины металла и диаметра сварочного электрода. Повышение напряжения приводит к увеличению ширины шва, а глубина провара при этом уменьшается.

От скорости перемещения электрода при прочих равных условиях зависит глубина провара. Она увеличивается при скоростях до 40 м/час, а потом уменьшается. Ширина шва с увеличением скорости уменьшается постоянно.

Работа с толстым металлом требует большей подготовки для сварщика. Шов всегда получается многослойным. Прежде чем браться за такую сварку, необходимо освоить основные технологические приемы.

Качественная сварка толстого металла

Сварка толстого металла основана на методе многослойного шва, при котором элементы должны накладываться на кромки стыков с применением особых технологических процессов. Существует несколько приемов для осуществления сварки металла с толстыми стенками, где предусматривается технологическая подготовка кромок и некоторые тонкости при соединении изделий со стенкой от 20 мм и выше.

В месте соединения двух деталей необходимо оставить зазор там, где будет проходить электрод.

  1. Как подготовить кромку: особенности
  2. Сварка толстостенного металла
  3. Метод сварки «горкой»
  4. Метод сварки «каскадом»: нюансы
  5. Использование сварки «блоками»
  6. Дуговая сварка соединений
  7. Преимущества и недостатки дуговой сварки
  8. Правильная сварка угловых стыков

Как подготовить кромку: особенности

Перед началом сварки заготовок, какое бы сечение ни имел бы материал, кромки необходимо подготовить, тщательно подходя к этому вопросу:

  • первую кромку нужно сточить под U — образную форму;
  • под ступенчатый профиль стачивается другая кромка.

Предварительная подготовка перед сваркой толстого металла необходима, так как без нее соединение невозможно.

В верхней части стыкуемых деталей, в месте введения электрода, необходим зазор в 1-1.5 см и больше, а внутри плоскости его не должно быть.

Сварка толстостенного металла

При сварке металла с толстыми стенками существует несколько технологий:

  • последовательное наложение шва горкой;
  • наложение в виде каскада;
  • последовательная или параллельная накладка блоками.

Метод сварки «горкой»

Первоначальный шов накладывается на зазор между деталями, используя для работы электрод сечением 5 мм. Накладываемый элемент должен составлять 1/3 толщины металла, который подвергается обработке.

После снятия окалин и брызг на первостепенный элемент накладывают второй. Размер общей высоты обоих швов будет равен 2/3 толщины.

Следуя первым двум принципам, создавая «горку», накладывается и третий слой. В этом случае толщина наваренного компонента такая же, как и сечение металла.

Накладывая четвертый элемент, выравнивается пространство, которое образовалось между кромкой и горкой.

Метод сварки «каскадом»: нюансы

Применяя этот метод, наложенный шов будет иметь несколько другой вид:

Варианты сварных соединений.

  • перед тем как начать основной стык, накладывают корневой шов длиной около 20 см;
  • следующий стык, имеющий длину в 40 см, как бы наползает на первый, при этом 20 см будут являться корневыми для третьего шва, а остальные 20 будут наползать на первый;
  • 20 см третьего шва также будут корневыми, 20 лягут на корневой шов второго, и оставшиеся 20 будут располагаться сверху первого и второго шва;
  • третий закрывается четвертым, который имеет такую же длину в 60 см и переходит на корневой участок второго шва.

Если при каскадной сварке использовать полуавтомат, то качество получается намного лучше, чем при ручном методе.

Использование сварки «блоками»

Если нет возможности использовать сварочный аппарат с полуавтоматом, то метод каскадной сварки легко изменить на блочный метод накладки швов.

При использовании блочного варианта сварка металла выглядит так:

  • сварка металла начинается с корневого шва;
  • поверх корневого шва наваривается следующий, который является промежуточным. Длина его составляет расстояние меньше, чем у первого шва.
  • сверху промежуточного шва укладывается последующий, который выходит на поверхность толстого металла, длина его практически равна длине корневого шва.

Дуговая сварка соединений

Также сварка толстых металлических изделий может производиться дуговым методом. Возникновение дуги происходит от прикасания электрода к свариваемому месту. Здесь нужны опыт и практика, так как если промедлить с отрывом электрода от металла, то его конец «примерзнет», из-за того, что он под воздействием сильной подачи тока имеет способность расплавляться.

Во время возникновения дуги мастеру необходимо постоянно держать нужную длину дуги, также нельзя допустить обрыва дуги, и по мере плавки электрода его нужно опускать.

Бывает так, что сварка внезапно прекращается и дуга обрывается. Ее нужно зажечь снова, но уже впереди места, где произошел обрыв на неоплавленном металле, а потом только переносят на шов и заново плавят место обрыва дуги, так как там образовался кратер. Тем самым можно добиться непрерывистого сварного шва.

Чтобы заполнить шов расплавленным металлом, электрод нужно двигать вдоль шва, а чтобы обеспечить полученный шов необходимой шириной, и для плавки кромок изделия электрод двигается поперек.

Если нужно наплавить стык в виде валика, движения совершают вдоль, не отклоняясь от шва. При наплавке валика ширина стыка будет на 2 мм шире самого электрода. Во время работы электрод двигают вдоль шва, соблюдая равномерность и определенное напряжение тока.

Схема движения электродов.

В последнее время широко стали применять ручную скоростную сварку с применением метода опирания. Принцип этого метода в том, что толстообмазанный электрод плавится быстрее, чем обмазка, и это приводит к образованию козырька из обмазки.

После образования козырька электрод упирают на свариваемое место и без колебаний ведут его по всему шву, что в результате дает прекрасный шов. Таким способом совершается более глубокая проварка, в отличие от обыкновенного наложения шва, что дает более высокую производительность.

Преимущества и недостатки дуговой сварки

Плюсы ручной дуговой сварки, которая производится электродом при температуре до 60000°С и концентрированном нагреве, в отличие от газовой и водородной сварки, в том, что у нее большая скорость, маленькая температурная зона, небольшая деформация.

К недостаткам относят:

  • невозможна регулировка глубины проплавки металла, нет возможности контролировать скорость расплавки электрода, что приводит к ухудшению качества стыка при сварке тонких металлов;
  • затрачивается много времени на обучение квалифицированных сварщиков (около 2-х лет);
  • образование шлаков с тыльной стороны стыка при использовании односторонней сварки.

Правильная сварка угловых стыков

При проведении сварочных работ бывает, что свариваемые изделия из толстого металла расположены под углом. Когда сваривают изделия, расположенные под углом, расплавленный металл стекает.

Чтобы такого не происходило, сварку в нижнем расположении рекомендовано совершать в «лодочку», а свариваемый материал располагают в таком положении, чтобы шлаки не стекали перед дугой, но нужно учесть то, что не всегда представляется доступной установка детали в нужном расположении.

Если нижнюю плоскость при угловой сварке располагать горизонтально, то может произойти непровар вершины угла или кромки. Если начать сварку с вертикального расположенного листа, то не проварится нижний лист. Из-за того, что расплав стечет вниз, поверхность нижнего листа будет как следует не прогрета. По этим причинам сварка этих стыков начинается с зажигания дуги на плоскости расположенной снизу.

Угол расположения электрода должен иметь по отношению к плоскости листа 45°, нужно немного наклонять его при сварке к одной и другой стороне переменно.

Соединение углов не в «лодочку» производят однослойным швом до 8 мм, а при толщине стыка большей величины накладывают от двух слоев и больше.

При выполнении углового шва, состоящего из многих слоев, сперва накладывают валик, сечением около 4 мм, который обеспечит глубокий провар корня. Учитывая поперечное сечение шва, нужно определиться с числом проходов. Эта величина составляется по отдельности для каждого слоя и равна 30-40 мм квадратных.

Сварка толстолистового металла

Сварка толстого металла, разумеется, отличается от технологии, применяемой при соединении тонкостенных заготовок. Ведь процесс сварного монтажа толстостенных заготовок основывается на формировании многослойного шва, элементы которого накладываются на стыкуемые кромки с помощью особых технологических приемов.

И в этой статье мы рассмотрим и упомянутые технологические приемы, с помощью которых осуществляется сварка металла большой толщины, и технологию подготовки стыкуемых кромок и прочие нюансы стыковки деталей с толщиной стенки от 2 сантиметров и более. Надеемся, что эта информация поможет вам разобраться с довольно сложным процессом сварки толстостенных и толстолистовых деталей.

  1. Подготовка кромок
  2. Сварка толстостенных труб и толстолистовых заготовок
  3. Сварка «горкой»
  4. Сварка «каскадом»
  5. Сварка «блоками»

Подготовка кромок

Под термином «заготовка с толстыми стенками» или «толстолистовая заготовка» в сварочном деле понимают изделия с толщиной стыкуемой кромки в 20 миллиметров и более.

Разумеется, перед сваркой заготовок, такие кромки готовят особым образом, а именно:

  • Во-первых, стачивают первую кромку под U-образный профиль.
  • Во-вторых, стачивают вторую кромку под ступенчатый профиль.

Без такой предварительной подготовки сварка толстолистового металла электродом любой толщины практически невозможна. Причем по наружной плоскости (в верхней части, со стороны введения электрода) стыкуемых деталей между кромками должен образоваться зазор в 10-15 миллиметров и более, а по внутренней плоскости (в нижней части) зазор должен быть практически нулевым.

Если вы не ошибетесь с габаритами кромок, то вы можете рассчитывать на двойной прирост производительности труда сварщика (повысится скорость наложения шва) и на 25-процентную экономию присадочного материала (электродов или проволоки).

Сварка толстостенных труб и толстолистовых заготовок

При стыковке толстостенных заготовок используются следующие технологии заваривания зазора между деталями:

  • Техника последовательного наложения швов горкой
  • Техника последовательно наложения швов каскадом.
  • Техника последовательного или параллельного наложения швов блоками.

И далее по тексту мы рассмотрим все три процесса.

Сварка «горкой»

Первая технология – формирование шва «горкой» — основана на следующей схеме сваривания:

  • На дно зазора между деталями накладывают первый шов, используя для этих целей 5-миллиметровый электрод. Толщина шва в данном случае должна равняться одной трети от толщины свариваемого металла.
  • После сбоя окалины и удаления брызг, от одной стенки зазора к другой, поверх первого шва, накладывается второй. Общая высота стыковочного шва (первого и второго) в данном случае равняется двум третям от толщины металла.
  • Руководствуясь аналогичным принципом, сварщик накладывает на очищенную от окалины и брызг «горку» второго шва третий слой расплавленного металла. Толщина шва в данном случае равняется толщине металла.
  • Последним, четвертым по счету швом, заваривают пространство между горкой и кромками торцов заготовок.

Сварка «каскадом»

В данном случае схема наложения швов выглядит несколько иначе:

  • В самом начале накладывается корневой шов, длина которого будет не более 20 сантиметров.
  • Далее накладывается второй шов, длиной 40 сантиметров, наползающий на первый. Причем 20 сантиметров второго шва будут корневыми, а следующие 20 см – наползут на первый шов.
  • Следующий – третий шов, имеет длину 60 сантиметров. Из которых 20 сантиметров будут корневыми, еще 20 улягутся на корневую часть второго шва и следующие 20 расположатся поверх первого и второго швов, заполняя 20-сантиметровый участок на всю толщину стыка.
  • Четвертый шов имеет аналогичную длину — 60 сантиметров. Он закрывает третий шов и выходит на толщину металла над корневой частью второго шва.

Проще говоря: швы накладываются ступеньками, образуя каскады. И крайние 20 сантиметров третьего и последующего швов выходят на толщину свариваемой заготовки.

Причем каскадная сварка полуавтоматом толстого металла или толстостенной трубы получается намного лучше, чем ручной вариант этого процесса.

Ведь мерные 60-сантиметровые швы лучше всего получаются при непрерывной подаче присадочного металла в зону сварочной ванны.

Сварка «блоками»

Если под руками нет полуавтоматического сварочного аппарата, то каскадную технологию можно преобразовать в блочный вариант наложения швов.

И в данном случае технологический процесс сварки толстостенной заготовки будет выглядеть следующим образом:

  • В первую очередь заваривают участок корневого шва.
  • Далее над корневым швом наваривают второй, промежуточный шов, длина которого будет чуть меньше габаритов первого шва.
  • Поверх второго (промежуточного) шва накладывают третий – выходящий на внешнюю поверхность металла на длине, лишь немного отстающей от габаритов корневого шва.

Далее сварку продолжают четвертым корневым швом, пятым промежуточным швом, наползающим на первый, и шестым, накладываемым встык со вторым. Словом, технология очень похожа на каскад. Только «соседние» швы не наползают, а стыкуются друг с другом.

В итоге, воспользоваться блочной технологией можно даже в том случае, когда вместо присадочной проволоки используется короткий, прутковый электрод.

Способы сварки металлов большой толщины

  • Главная
  • О компании
    • Наш бренд «AlfaMag»
    • О компании «АльфаПром»
    • Сертификаты
  • Каталог оборудования
  • Пресс-центр
    • Новости компании
    • Новости авиастроения
    • Новости военно-промышленного комплекса
    • Новости машиностроения
    • Новости судостроения
  • Новинки
  • Технические статьи
    • Видеообзор сварочного оборудования
    • Инструкции
    • Каталоги и брошюры
    • Газовая сварка
    • Дуговая сварка
    • Контактная сварка
    • Плазменная сварка
    • Полуавтоматическая сварка
    • Сварка цветных металлов
    • Сварка полимеров
    • Сварка разнородных металлов
    • Сварка труб
    • Сварочное оборудование
    • Другие методы сварки
  • Услуги компании
    • Бесплатная доставка
    • Пуско-наладка оборудования
    • Демонстрация оборудования
    • Гарантийное обслуживание
    • Ремонт сварочного оборудования
  • Контакты

Способы сварки швов различной протяженности и большой толщины

Сварочные швы разделяют по такой характеристике, как протяженность.

В этом плане, все швы можно разделить на три отдельные группы. Таким образом, имеем:

  • короткие швы, протяженностью 250-300 мм;
  • швы средней длины, протяженность которых составляет 300-1000 мм;
  • длинные швы, длина которых составляет 1000 мм и более.

Все три категории имеют свои особенности, и поэтому свариваются по-своему. Так, например, короткие швы свариваются от начала к концу лишь в одном направлении. Средние швы сваривают несколькими участками. При этом длина участка выбирается такой, чтобы на нем можно было полностью выварить два, три, четыре электрода. Сварка участков начинается в центре шва и ведется от средины к ее концам. Или же это происходит обратноступенчатым способом, то есть от одного края к другому.

Длинные же швы очень широко применяются в таких отраслях, как резервуаростроение. То есть, на тех участках, где необходимо сварить трубы или цистерны большого диаметра, длины и так далее. Например, это также может быть сфера судостроения. В таких случаях, сварка проходит, как правило, вразбивку, при помощи обратноступенчатого способа.

Также, достаточно распространенной и характерной является сварка металлов большой толщины. Как правило, в этих случаях используются многослойные швы, которые рекомендуют сваривать, так называемым, методом «горка» или же каскадным методом. Во время сварки «горкой» наноситься первый слой шва на участке, длиной около 200-300 мм. После этого, рабочую поверхность очищают, удаляя окалины и шлак, после чего, приступают к нанесению второго слоя. Это делается таким образом, чтобы длина второго слоя была в два раза больше первого. В конце концов, отступив от конца второго слоя, также на 200-300 мм, наноситься третий сварочный шов. Таким образом, образуется сварочный шов, который располагается в обе стороны от центральной точки, при помощи коротких швов.

Каскадный же метод сварки используется при толщине сварных листов более 25 мм, и данный способ является разновидностью предыдущего метода. Если же вы имеете дело с листами, толщина которых превышает 60 мм, в таком случае целесообразнее пользоваться сварочными автоматами, которые будут сообщать электродной проволоке поперечные и возвратно-поступательные передвижения. Таким образом, сварка металла большой толщины является достаточно трудоемкой, при использовании любого возможного метода сварки.

Особенности сварки деталей большой толщины

Сварное соединение большой толщины выполняют путем наложения большого числа валиков, и поэтому весьма вероятно появление несплавлений.

Несплавления — опасный дефект, тем более, что обнаружить его рентгеновским просвечиванием не всегда возможно, а ультразвуковой контроль не во всех случаях применим. Установлено, что вероятность возникновения несплавлеиий особенно велика при образовании наплывов с боков шва (рис. 1) и при остроконечной форме проплавления. Из приведенных на рис. 2 макрошлифов сварных швов видно, что при составе защитной смеси 30% Ar + 70% He и температуре предварительного подогрева 40° С наплавы отсутствуют и форма проплавления наиболее благоприятная. Тем не менее, при сварке необходимо выбрать такую схему заполнения разделки, которая обеспечивала бы повторное переплавление всех краевых участков швов, особенно граничащих с разделкой.

Рис. 1. Места наиболее вероятного появления несплавлений при многопроходной сварке плавящимся электродом (места несплавлений показаны стрелками)

Рис. 2. Макрошлифы сварных швов, выполненных плавящимся электродом диаметром 4 мм:

а — без предварительного подогрева в аргоне; б с предварительным подогревом до 40° С в смеси 30% Ar и 70% He.

При правильном проведении процесса сварки плавящимся электродом многослойных швов можно получать практически бездефектные сварные соединения.

При изготовлении крупногабаритных конструкций нередко возникает необходимость сваривать многопроходной сваркой детали сложной формы и большой толщины. Если деталь криволинейной формы (или деталь, имеющую прямолинейные и криволинейные участки) сваривать послойным заполнением разделки, повторяющей форму детали, то сварочный процесс трудно автоматизировать из-за необходимости использования системы автоматического слежения за длиной дуги, а также сложной технологической оснастки для поворота детали во время сварки. Кроме того, разделка кромок деталей под сварку требует сложной механической обработки, а применение полуавтоматической сварки увеличивает трудоемкость изготовления детали и снижает качество сварного соединения. Не дает ощутимых преимуществ и комбинированное применение автоматической сварки на отдельных (например, прямолинейных) участках с полуавтоматической сваркой, так как в этом случае трудно обеспечить высокое качество шва в местах перехода от участка, выполненного автоматической сваркой, к участку, выполненному полуавтоматической сваркой, или наоборот.

Существует способ сварки деталей криволинейной формы большой толщины, который позволяет устранить указанные недостатки. Для этого разделку кромок под сварку на криволинейных участках выполняют так, что стыкующиеся кромки вдоль направления сварки представляют собой ломаную линию, причем сварку каждого валика производят непрерывно. На рис. 3 приведен вид сбоку на разделку одной из половин свариваемой детали криволинейной формы, выполненную по вышеуказанному способу.

Рис. 3. Сварка деталей криволинейной формы большой толщины.

Сварку деталей при сложной форме разделки производят сварочным автоматом, который должен передвигаться по направляющим, повторяющим в точности форму ломаной линии стыкующихся кромок. Работу выполняют либо вообще без технологической, оснастки, либо применяют несложное приспособление для поворота детали в момент перехода дуги от одного участка стыкующих кромок к другому. Разделку кромок под сварку выполняют так, чтобы стыкующиеся кромки 1 вдоль направления сварки представляли собой ломаную линию с возможно меньшим числом прямолинейных участков и возможно большим углом B между ними. Объемы наплавленного металла по обе стороны стыкующихся кромок на криволинейных участках детали должны быть после сварки примерно равными во избежание появления остаточных деформаций.

Для обеспечения непрерывности процесса сварки на криволинейных участках детали в местах уменьшения глубины разделки ставят формирующие планки 2.

Если деталь можно расположить так, чтобы угол а на любом участке не превышал 10°, сварку ведут на неподвижной детали. В противном случае деталь сваривают в приспособлении, позволяющем поворачивать ее при переходе дуги от одного участка стыкующихся кромок к другому так, чтобы сварку вести все время в нижнем положении. При этом угол B может быть менее 160°. Окончание сварки участков с глубокой разделкой, подобных участку 3, производят прямолинейными швами с выводом начала и окончания каждого валика за пределы рабочего, сечения заготовки.

Довольно сложную задачу представляет и сварка кольцевых швов крупногабаритных деталей. Наиболее просто такие швы выполнять полуавтоматической сваркой горизонтального стыка, однако при особо высоких требованиях к качеству сварного соединения или при большом объеме работ следует применять автоматическую сварку плавящимся электродом большого диаметра. В этом случае необходимо большое количество технологической оснастки: роликового стенда для вращения деталей при сварке (причем желательно, чтобы скорость регулировалась плавно во всем диапазоне скоростей сварки); приспособления, обеспечивающего радиальную жесткость изделия на роликовом стенде; оснастки для кантовки изделия; стяжного приспособления, центрирующих и подкладных колец и т. д.

Кольцевые швы большого диаметра обычно сваривают вразбивку, т. е. участками. Однако опыт изготовления крупногабаритных изделий из алюминиевых сплавов с большим числом кольцевых швов свидетельствует о возможности и преимуществах наложения каждого валика многослойного шва без остановки процесса сварки. Одновременно с началом сварки включается привод роликового стенда, который вращает деталь со скоростью сварки на радиусе шва. Сварочный автомат либо закреплен на неподвижной платформе, либо катится по поверхности изделия навстречу его движению с той же скоростью сварки. В последнем случае необходимо обеспечить слежение сварочного автомата за стыком по направляющей.

Особое внимание следует уделять началу и окончанию каждого валика, так как при сварке без остановки окончание и начало шва трудно вывести за пределы сварного соединения. Наиболее удачной оказалась технология, предусматривающая вывод сварочного кратера на технологическую наплавку.

Для ее применения необходимо к началу сварки подготовить к одновременной работе сварщика-автоматчика, сварщика-полуавтоматчика и слесаря.

Наложение очередного валика начинают непосредственно на сварном шве. На поверхности укладываемого валика не прерывая процесса сварки производится наплавка полуавтоматом. Длина наплавки должна составлять 100—120 мм, высота 8—10 мм и ширина должна быть несколько больше ширины свариваемого валика. Затем, также не останавливая процесса сварки, подрубают пневматическим зубилом начало шва, вырубают плавный подъем до поверхности наплавки в ее середине (рис. 4) и зачищают проволочной; щеткой поверхность наплавки и вырубки. При окончании сварки кольцевого шва сварочную дугу по вырубленному подъему выводят на поверхность наплавки и здесь обрывают, так что кратер оказывается выведенным за пределы наложенного прохода. Технологическая наплавка вместе с кратером подрубается заподлицо с валиком.

Рис. 4. Вывод сварочного кратера на технологическую наплавку:

1 — притупление разделки кромок; 2 — начало накладываемого валика; 3 — технологическая наплавка; 4 — линия подрубки.

Сборку деталей, свариваемых кольцевым швом (обечайки, днища, фланцы) следует выполнять в специальном приспособлении, устанавливаемом затем на роликовый стенд. Детали должны быть стянуты в этом приспособлении усилием, обеспечивающим их взаимную неподвижность при подъеме собранного узла краном, кантовке, вращении на стенде и в процессе сварки. Приспособление должно также обеспечивать сохранение стягивающих усилий в процессе сварки стыка при поперечной усадке шва. Наиболее просто эта задача решается применением тарельчатых пружин в стягивающих стойках приспособления. Если приспособление не обеспечивает надежное закрепление деталей и их взаимную неподвижность при сварке, следует применить временные скрепляющие планки (рис. 5), удаляемые в процессе сварки при приближении к ним сварочного автомата.

Рис. 5. Стык, собранный под сварку:

1 — свариваемые детали; 2 — временные скрепляющие планки; 3 — разделка кромок под сварку; 4 — угловой шов (прихватка) скрепляющей планки; 5 — подкладка; 6 — прижимной винт; 7 — центрирующее кольцо.

При расположении планок по периметру стыка необходимо учитывать, что раскрытие состыкованных кромок наиболее интенсивно происходит после заварки кольцевого стыка на 1/4—1/3 часть его со стороны, противоположной заваренному участку.

Кольцевой стык при сборке следует центрировать либо снаружи обжимным кольцом, если первый валик сваривают изнутри, либо изнутри распорным кольцом при сварке первого валика снаружи, причем подкладку целесообразно изготовлять вместе с центрирующим кольцом (см рис. 5). Сварку кольцевых швов на деталях небольшого диаметра (трубы диаметром до 200— 250 мм со стенкой толщиной до 6—8 мм) в том случае, когда предъявляются особо высокие требования к качеству сварного соединения, следует выполнять автоматической сваркой неплавящимся электродом. Сварочный автомат в этом случае должен обеспечивать следующее:

1) после нажатия на кнопку «Пуск» включение газового клапана для продувки защитным газом перед началом сварки в течение не менее 10—15 сек;

2) автоматическое включение осциллятора и выключение его после возбуждения дуги;

3) пуск подачи присадочной проволоки и включение привода вращения изделия после некоторой выдержки сварочной дуги на месте ее возбуждения для образования сварочной ванны нужных размеров (5—15 сек);

4) в процессе сварки возможность плавной регулировки скорости сварки, величины сварочного тока, скорости подачи присадочной проволоки, длины дуги и поперечного перемещения электрода; желательно, чтобы имелась возможность программирования по периметру стыка или во времени величины сварочного тока, или скорости сварки;

5) после нажатия на кнопку «Стоп» прекращение подачи присадочной проволоки и плавное уменьшение сварочного тока до обрыва дуги для исключения образования кратера;

6) после обрыва дуги продувка газа должна длиться не менее 10—15 сек.

Сборку труб под сварку следует проводить с помощью центратора, обеспечивающего плотную стыковку, закрепление и центрирование труб. В конструкции центратора должна быть предусмотрена сменная разрезная подкладка с канавкой для формирования усиления с обратной стороны и устройство для защиты от окисления корня шва поддувом защитного газа в канавку подкладки. На рис. 6 приведен центратор, обеспечивающий точную сборку труб под сварку.

Рис. 6. Центратор для сварки труб.

Для надежной защиты корня шва поддувом аргона необходимо устанавливать заглушки внутри трубы на расстоянии 300 мм от стыка. Трубы, подаваемые на сварку, должны быть обезжирены и полностью или частично (на 300—500 мм от стыка) химически обработаны. Непосредственно перед сборкой й сваркой стыкуемые торцы труб, а также участки внешней и внутренней поверхности труб шириной 10—15 мм необходимо зачищать шабером.

При сварке неповоротных стыков на вертикальных трубах следует смещать электрод на 1,5—2 мм вверх от стыка.

Возбуждать дугу следует на возможно меньшем токе, с тем чтобы избежать попадания вольфрама в шов. При выдержке после возбуждения дуги сварочный ток плавно доводят до нужной величины и после образования ванны, обеспечивающей полное проплавление, включают механизмы движения и подачи присадочной проволоки. После сварки приблизительно 2/3 стыка труб следует уменьшить сварочный ток на 10—15%, чтобы сохранить параметры шва при сварке остальной части стыка, уже подогретой встречной тепловой волной. При окончании сварки и выходе сварочной дуги на начало шва следует отключить механизм подачи присадочной проволоки и после переплавления небольшого начального участка шва включить систему обрыва дуги без образования кратера. Участок повторного переплавления (до начала уменьшения тока) должен составлять не более 1/10—1/12 длины стыка, так как от его протяженности зависит деформация труб от сварки. Кроме того, следует учитывать, что повторное переплавление ведется фактически на весу вследствие перемещения наружу стыка труб после сварки первого валика. При повторном переплавлении шов опускается в образовавшийся между стыком и подкладкой зазор, в результате чего увеличивается усиление с обратной стороны шва (рис. 7).

Рис. 7. Участок повторного переплавления при перекрытии кольцевого шва:

1 — шов после первого наложения валика; 2 — шов после второго наложения валика.

Оцените статью