Аустенизация стали 12х18н10т что это?

Большая Энциклопедия Нефти и Газа Аустенизация Аустенизация является ведущим процессом в формировании свойств участков зоны термического влияния в широком диапазоне температур. Поэтому
Содержание

Аустенизация стали 12х18н10т что это?

Большая Энциклопедия Нефти и Газа

Аустенизация

Аустенизация является ведущим процессом в формировании свойств участков зоны термического влияния в широком диапазоне температур. Поэтому целесообразно разделить зону термического влияния по принципу полноты характера аустенизации на три температурные области. Температурный интервал этих областей зависит от многих факторов и определяется особенностями как технологического процесса сварки, так и свойствами основного металла. [1]

Аустенизация — это термообработка стали ( процесс, аналогичный закаливанию углеродистых сталей), состоящая из нагрева ее до 1050 — 1100 С, кратковременного ( в течение 10 мин) выдерживания при этой температуре и последующего быстрого охлаждения. В процессе нагрева карбиды хрома ( и углерод) полностью растворяются в аустените; быстрое охлаждение препятствует повторному выделению карбидов. Если применялась сварка, то изготовленные изделия рекомендуется вновь подвергнуть аустенизации. [2]

Аустенизация при 1065 С или стабилизирующий отжиг мало изменяют механические свойства сварочного соединения, но сказываются на коррозионной стойкости, что подробно описано в соответствующих разделах. [4]

Аустенизация — это термообработка стали ( процесс, аналогичный закаливанию углеродистых сталей), состоящая из нагрева ее до 1050 — 1100 С, кратковременного ( в течение 10 мин) выдерживания при этой температуре и последующего быстрого охлаждения. В процессе нагрева карбиды хрома ( и углерод) полностью растворяются в аустените; быстрое охлаждение препятствует повторному выделению карбидов. Если применялась сварка, то изготовленные изделия рекомендуется вновь подвергнуть аустенизации. [5]

Аустенизация ( закалка на аустенит) состоит из нагрева сварного соединения паропроводов до 1050 — 1150 С, непродолжительной выдержки — например час, и последующего охлаждения на воздухе или в воде. Целью аустенизации является получение однородной структуры аустенита, улучшение свойств стали и снижение уровня остаточных сварочных напряжений. Аустенизации подвергаются сварные соединения паропроводов из жаропрочных высоколегированных сталей аустепитного класса. [6]

Аустенизация ( закалка на аустенит) проводится для сварных соединений из аустепитных сталей. При аустенизации сварное соединение нагревают до 1075 — 1125 С, выдерживают при этой температуре около 1 ч и затем быстро охлаждают на воздухе. [7]

Аустенизация ( закалка на аустенит) проводится для сварных соединений из аустенитных сталей. При аустенизации сварное соединение нагревают до 1075 — 1125 С, выдерживают при этой температуре около 1 ч н затем быстро охлаждают на воздухе. [8]

Аустенизация применяется для марок стали аустеннтного класса ( в большинстве случаев для нержавеющих и жаропрочных, см. стр. [9]

Аустенизация при высоких температурах имеет целью перевести выделившиеся при предшествующей обработке карбиды и другие избыточные фазы в твердый раствор, а последующее старение имеет целью вторичное выделение из твердого раствора некоторого количества избыточных фаз, но в состоянии высокой их дисперсности. [10]

Аустенизация ( нагрев на 1050 и выдержка 2 часа) сильно увеличивает проникающую способность УЗВ. [11]

Аустенизация восстанавливает свойства металла деформированных ги-бов. Необходим нагрев до 1050 — 1 100 С с выдержкой в течение 30 мин. [13]

Аустенизация гибов поверхностей нагрева может производиться также с помощью непосредственного нагрева трубы током, при этом выдержка при температуре 1100 — 1120 С не должна быть менее 4 мин. [14]

Аустенизацию и стабилизирующий отжиг используют для термической обработки сварных соединений из хро-моникелевых и нержавеющих сталей. При аустенизации сварное соединение нагревают до 1050 — 1100 С, выдерживают в течение 1 — 2 ч и охлаждают на воздухе. В результате удается получить однородную структуру аусте-нита, улучшить механические свойства металла ( особенно пластичность) и на 70 — 80 % снизить уровень остаточных сварочных напряжений. При стабилизирующем отжиге сварное соединение нагревают до 950 — 970 С, выдерживают в течение 2 — 3 ч и охлаждают на воздухе. [15]

Аустенитные нержавеющие стали: структура и свойства

Аустенитные нержавеющие стали – это коррозионностойкие хромоникелевые аустенитные стали, которые в мировой практике известны как стали типа 18-10. Это наименование им дает номинальное содержание в них 18 % хрома и 10 % никеля.

Хромоникелевые аустенитные стали в ГОСТ 5632-72

В ГОСТ 5632-72 хромоникелевые аустенитные стали представлены марками 12Х18Н9Т, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н9, 17Х18Н9, 08Х18Н10, 03Х18Н11.

Роль хрома в аустенитных нержавеющих сталях

Основным элементом, дающим сталям типа 18-10 высокую коррозионную стойкость, является хром. Роль хрома заключается в том, что он обеспечивает способность стали к пассивации. Наличие в стали хрома в количестве 18 % делает ее стойкой во многих окислительных средах, в том числе в азотной кислоте в большом диапазоне, как по концентрации, так и по температуре.

Роль никеля в аустенитных нержавеющих сталях

Легирование никелем в количестве 9-12 % переводит сталь в аустенитный класс. Это обеспечивает стали высокую технологичность, в частности, повышение пластичности и снижение склонности к росту зерна, а также уникальные служебные свойства. Стали типа 18-10 широко применяют в качестве коррозионностойких, жаростойких, жаропрочных и криогенных материалов.

Фазовые превращения в аустенитных нержавеющих сталях

В хромоникелевых аустенитных сталях могут происходить следующие фазовые превращения:

  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Межкристаллитная коррозия в аустенитных нержавеющих сталях

Склонность стали к межкристаллитной коррозии проявляется в результате выделения карбидных фаз. Поэтому при оценке коррозионных свойств стали важнейшим фактором является термокинтетические параметры образования в ней карбидов.

Склонность к межкристаллитной коррозии закаленной стали типа 18-10 определяется, в первую очередь, концентрацией углерода в твердом растворе. Повышение содержания углерода расширяет температурный интервал склонности стали к межкристаллитной коррозии.

Сталь типа 18-10 при выдержке в интервале 750-800 ºС становится склонной к межкристаллитной коррозии:

  • при содержании углерода 0,084 % — уже в течение 1 минуты;
  • при содержании углерода 0,054 % — в течение 10 минут;
  • при содержании углерода 0,021 5 – через более чем 100 минут.

С уменьшением содержания углерода одновременно снижается температура, которая соответствует минимальной длительности изотермической выдержки до начала межкристаллитной коррозии.

Сварка аустенитных нержавеющих сталей

Необходимую степень стойкости стали против межкристаллитной коррозии, позволяющей выполнять сварку достаточно толстых сечений, обеспечивает содержание углерода в стали типа 18-10 не более 0,03 %.

Межкристаллитная коррозия при 500-600 ºС

Снижение содержания углерода даже до 0,006 % не обеспечивает полной стойкости сталей типа 18-10 к межкристаллитной коррозии при 500-600 ºС. Это представляет опасность при длительной службе металлоконструкций в этом интервале температур.

Стабилизация стали титаном и ниобием

При введении в хромоникелевую сталь типа 18-10 титана и ниобия, которые способствуют образования карбидов, меняются условия выделения карбидных фаз. При относительно низких температурах 450-700 ºС преимущественно выделяются карбиды типа Cr23C6, которые и дают склонность к межкристаллитной коррозии. При температурах выше 700 ºС преимущественно выделяются специальные карбиды типа TiC или NbC. При выделении только специальных карбидов склонности к межкристаллитной коррозии не возникает.

Азот в аустенитных нержавеющих сталях

Азот, как и углерод, имеет переменную растворимость в аустените. Азот может образовывать при охлаждении и изотермической выдержке самостоятельные нитридные фазы или входить в состав карбидов, замещая в них углерод. Влияние азота на склонность к межкристаллитной коррозии хромоникелевых аустенитных сталей значительно слабее, чем у углерода, и начинает проявляться только при содержании его более 0,10-0,15 %. Вместе с тем, введение азота повышает прочность хромоникелевой аустенитной стали. Поэтому на практике применяют в этих сталях небольшие добавки азота.

Влияние содержания хрома

С повышением концентрации хрома растворимость углерода в хромоникелевом аустените уменьшается, что облегчает выделение в нем карбидной фазы. Это, в частности, подтверждается снижением ударной вязкости стали с повышением содержания хрома, что связывают с образованием карбидной сетки по границам зерен.

Вместе с тем, повышение концентрации хрома в аустените приводит к существенному снижению склонности стали к межкристаллитной коррозии. Это объясняют тем, что хром существенно повышает коррозионную стойкость стали. Более высокая концентрация хрома в стали дает меньшую степень обеднения им границ зерен при выделении там карбидов.

Влияние содержания никеля

Никель снижает растворимость углерода в аустените и тем самым снижает ударную вязкость стали после отпуска и повышает ее склонность к межкристаллитной коррозии.

Влияние легирующих элементов на структуру стали

По характеру влияния легирующих и примесных элементов на структуру хромоникелевых аустенитных сталей при высокотемпературных нагревах их разделяют на две группы:
1) ферритообразующие элементы: хром, титан, ниобий, кремний;
2) аустенитообразующие элементы: никель, углерод, азот.

Дельта-феррит в хромомолибденовой аустенитной стали

Присутствие дельта-феррита в структуре аустенитной хромоникелевой стали типа 18-10 оказывает отрицательное влияние на ее технологичность при горячей пластической деформации – прокатке, прошивке, ковке, штамповке.

Количество феррита в стали жестко лимитируется соотношением в ней хрома и никеля, а также технологическими средствами. Наиболее склонна к образованию дельта-феррита группа сталей типа Х18Н9Т (см. также Нержавеющие стали). При нагреве этих сталей до 1200 ºС в структуре может содержаться до 40-45 % дельта-феррита. Наиболее стабильными являются стали типа Х18Н11 и Х18Н12, которые при высокотемпературном нагреве сохраняют практически чисто аустенитную структуру.

Читайте также  Как завулканизировать покрышку в домашних условиях?

Мартенсит в хромоникелевых аустенитных сталях

В пределах марочного состава в сталях типа Х18Н10 хром, никель, углерод и азот способствуют понижению температуры мартенситного превращения, которое вызывается охлаждением или пластической деформацией.

Влияние титана и ниобия может быть двояким. Находясь в твердом растворе, оба элемента повышают устойчивость аустенита в отношении мартенситного превращения. Если же титан и ниобий связаны в карбонитриды, то они могут несколько повышать температуру мартенситного превращения. Это происходит потому, что аустенит в этом случае обедняется углеродом и азотом и становится менее устойчивым. Углерод и азот являются сильными стабилизаторами аустенита.

Термическая обработка хромоникелевых аустенитных сталей

Для хромоникелевых аустенитных сталей возможны два вида термической обработки:

  • закалка и
  • стабилизирующий отжиг.

Параметры термической обработки отличаются для нестабилизированных сталей и сталей, стабилизированных титаном или ниобием.

Закалка является эффективным средством предупреждения межкристаллитной коррозии и придания стали оптимального сочетания механических и коррозионных свойства.

Стабилизирующий отжиг закаленной стали переводит карбиды хрома:

  • в неопасное для межкристаллитной коррозии состояние для нестабилизированных сталей;
  • в специальные карбиды для стабилизированных сталей.

Закалка аустенитных хромоникелевых сталей

В сталях без добавок титана и ниобия под закалкой понимают нагрев выше температуры растворения карбидов хрома и достаточно быстрое охлаждение, фиксирующее гомогенный гамма-раствор. Температура нагрева под закалку с увеличением содержания углерода возрастает. Поэтому низкоуглеродистые стали закаливаются с более низких температур, чем высокоуглеродистые. В целом интервал температуры нагрева составляет от 900 до 1100 ºС.

Длительность выдержки стали при температуре закалки довольно невелика. Например, для листового материала суммарное время нагрева и выдержки при нагреве до 1000-1050 ºС обычно выбирают из расчета 1-3 минуты на 1 мм толщины.

Охлаждение с температуры закалки должно быть быстрым. Для нестабилизированных сталей с содержанием углерода более 0,03 % применяют охлаждение в воде. Стали с меньшим содержанием углерода и при небольшом сечении изделия охлаждают на воздухе.

Стабилизирующий отжиг аустенитных хромоникелевых сталей

В нестабилизированных сталях отжиг проводят в интервале температур между температурой нагрева под закалку и максимальной температуры проявления межкристаллитной коррозии. Величина этого интервала в первую очередь зависит от содержания хрома в стали и увеличивается с повышением его концентрации.

В стабилизированных сталях отжиг проводят для перевода углерода из карбидов хрома в специальные карбиды титана и ниобия. При этом освобождающийся хром идет на повышение коррозионной стойкости стали. Температура отжига обычно составляет 850-950 ºС.

Стойкость аустенитных хромоникелевых сталей к кислотам

Способность к пассивации обеспечивает хромоникелевым аустенитным сталям достаточно высокую стойкость в азотной кислоте. Стали 12Х18Н10Т, 12Х18Н12Б и 02Х18Н11 имеют первый балл стойкости:

  • в 65 %-ной азотной кислоте при температуре до 85 ºС;
  • в 80 %-ной азотной кислоте при температуре до 65 ºС;
  • 100 %-ной серной кислоте при температуре до 65 ºС;
  • в смесях азотной и серной кислот: (25 % + 70 %) и 10 % + 60 %) при температуре до 70 ºС;
  • в 40 %-ной фосфорной кислоте при 100 ºС.

Аустенитные хромоникелевые стали имеют также высокую стойкость к растворах органических кислот — уксусной, лимонной и муравьиной, а также в щелочах КОН и NaOH.

Нержавеющие хромоникелевые (аустенитные) стали.

Нержавеющие стали в составе которых железо, хром и никель — это важнейшая категория специальных конструкционных материалов, которая нашла применение во многих отраслях промышленности. В этой статье речь пойдет об одном из видов нержавеющей стали — хромоникелевых имеющих аустенитную структуру. И немного о свойствах и применении нержавеющей стали 12Х18Н10Т.

Коррозия и ее особенности.

Я заметил, что описывая качества нержавеющих сталей и отмечая их нужность и полезность для промышленности, до сих пор не акцентировал внимание на том почему они так важны. Основное свойство нержавеющих сталей — способность противостоять коррозии, поэтому несколько слов о том, что это такое.

Коррозия — это процесс разрушения поверхности металлов в результате чисто химического или электрохимического воздействия внешней среды, как правило агрессивной. В общем случае коррозия металла сопровождается образованием на поверхности продуктов разрушения, таких как ржавчина, но бывают и разрушения без внешних проявлений. Интенсивность коррозии зависит от свойств металла и степени агрессивности окружающей среды.

Коррозия это довольно широкое понятие и характеризуется по различным проявлениям:

  • сплошная (равномерная) коррозия, когда разрушению подвергается вся поверхность металла;
  • точечная (местная, щелевая, питтинговая) коррозия, когда разрушаются отдельные участки поверхности металла;
  • межкристаллитная коррозия, когда коррозия распространяется в глубь изделия по границам зерен;
  • коррозия под напряжением (коррозионное растрескивание), когда на поверхности металла развиваются трещины вследствие одновременного воздействия растягивающих напряжений и агрессивной среды.

Отдельный вид — электрохимическая коррозия, когда к чисто химическим процессам взаимодействия металла и окружающей среды, добавляются электрохимические процессы на границе раздела. Это самый разрушительный вид коррозии.

В процессе электрохимической коррозии разрушение металлов происходит под воздействием электролитов и сопровождается переходом атомов. На практике чаще всего электролитами выступают водные растворы солей, кислот и щелочей. Таким образом интенсивному разрушению электрохимической коррозией подвергаются металлические емкости, трубопроводы, детали машин и части сооружений находящиеся в контакте с морской и речной водой, а также грунтовыми водами.

Из теории электрохимической коррозии следует, что наибольшую устойчивость имеют очень чистые металлы. Но в жизни использование чистых металлов практически невозможно, поэтому возникает необходимость обеспечения однородной структуры твердого раствора в сплавах.

Повышенная стойкость против равномерной коррозии в широкой гамме коррозионно-активных сред различной степени агрессивности — отличительная особенность нержавеющих сталей и сплавов. Многие виды нержавеющие стали кроме того обладают стойкостью против межкристаллитной и точечной коррозии и коррозионного растрескивания.

Общее о хромоникелевых нержавеющих сталях.

Основные легирующие элементы, придающие хромоникелевой стали коррозионную стойкость в окислительных средах это Cr (хром) и Ni (никель). Хром способствует образованию на поверхности нержавеющей стали защитной плотной пассивной пленки окисла Сr2O3. Необходимая для придания коррозионной стойкости нержавеющей стали концентрация хрома в сталях этой группы составляет 18%.

Никель относится к металлам находящимся или легко переходящим в так называемое «пассивное» состояние. В пассивным состоянии металл или сплав обладает повышенной коррозионной стойкостью в агрессивной среде. Хотя, конечно, эта способность никеля меньше чем у хрома или молибдена.

Хром и железо в сплаве образуют твердый раствор, а никель в количестве 9—12%, кроме того, способствует формированию аустенитной структуры. Благодаря аустенитной структуре хромоникелевые нержавеющие стали отличаются высокой технологичностью при горячей и холодной деформациях и стойкостью при низких температурах.

Хромоникелевые аустенитные нержавеющие стали наиболее широко распространенная группа коррозионностойких сталей. Они так же известны в мировой практике под общим названием сталей типа 18-10.

В нашей стране наиболее распространены марки хромоникелевых нержавеющих сталей: 12Х18Н10Т, 08Х18Н10Т (ЭИ914), 08Х18Н10, 12Х18Н9Т, 03Х18Н11, 12Х18Н12Т, 08Х18Н12Б (ЭИ402), 02Х18Н11, 03Х19АГ3Н10.

Эти нержавеющие стали обладают коррозионной стойкостью во многих окисляющих средах при различной концентрации и в широком диапазоне температур. Они так же обладают жаростойкостью и жаропрочностью, но при умеренных температурах.

Стойкость нержавеющей стали против межкристаллитной коррозии

Способность сопротивляться межкристаллитной коррозии у хромоникелевых аустенитных нержавеющих сталей в первую очередь зависит от содержания углерода в твердом растворе. Углерод способствует выделению в твердом растворе карбидных фаз, тем самым способствую ускорению проявления межкристаллитной коррозии с повышением температуры.

Хромоникелевые аустенитные нержавеющие стали при выдержке в интервале 750-800 ºС теряют способность сопротивляться межкристаллитной коррозии:

  • при содержании углерода 0,084 % — в течение 1 минуты;
  • при содержании углерода 0,054 % — в течение 10 минут;
  • при содержании углерода 0,021 5 – через более чем 100 минут.

Содержание азота в составе хромоникелевых аустенитных нержавеющих сталей так же оказывают влияние на склонность к межкристаллитной коррозии, но в значительно меньшей степени. наличие азота в составе может быть даже полезно для повышения прочности.

Повышение концентрации никеля в составе хромоникелевых аустенитных нержавеющих сталей способствует снижению растворимости углерода, но отрицательно влияет на ударную вязкость хромоникелевой стали после отпуска и способствует межкристаллитной коррозии.

Растворимость углерода в твердом растворе хромоникелевых аустенитных нержавеющих сталей происходит и при увеличении содержания хрома. В этом случае так же происходит снижение ударной вязкости стали, но при этом стойкость против межкристаллитной коррозии возрастает.

Закалка аустенитных хромоникелевых сталей.

Углерод в составе аустенитных хромоникелевых нержавеющих сталей без добавок титана и ниобия влияет на температуру закалки стали. При закалке требуется произвести нагрев стали выше температуры растворения карбидов хрома, последующее быстрое охлаждение предназначено фиксировать однородность твердого раствора. Таким образом при увеличении содержания углерода требуется большая температура нагрева под закалку. В целом интервал температуры нагрева при закалке аустенитных хромоникелевых нержавеющих сталей составляет от 900 до 1100 ºС.

Длительная выдержка аустенитных хромоникелевых нержавеющих сталей при достижении температуры закалки не требуется. Для листовой нержавеющей стали общее время нагрева до 1000-1050 ºС и выдержки составляет 1-3 минуты на 1 мм толщины листа.

А вот охлаждение должно быть быстрым. Для аустенитных хромоникелевых нержавеющих сталей с содержанием углерода более 0,03 %, относящихся к «нестабилизированным» применяют охлаждение в воде. Нержавеющие стали с меньшим содержанием углерода и имеющие небольшие сечения можно охлаждать на воздухе.

Нержавеющая сталь 12Х18Н10Т применение, свойства.

Сталь 12Х18Н10Т отличный пример хромоникелевой аустенитной нержавеющей стали, широко применяемой при производстве сварных конструкций. Она может работать в контакте с азотной кислотой и другими сильными окислителями; в некоторых органических кислотах средней концентрации, органических растворителях, атмосферных условиях и т.д. Это емкости, теплообменники, а так же сварные конструкций в криогенной технике (до —269 °С).

Примеры использования нержавеющей стали 12Х18Н10Т:

  • прокат кованый круглый, квадратный, шестигранный
  • лист толстый;
  • лист тонкий;
  • лента холоднокатаная;
  • трубы бесшовные горячедеформированные;
  • трубы бесшовные холодно- и теплодеформированные;
  • проволока;
  • профили стальные фасонные.

Коррозионная стойкость нержавеющей стали 12Х18Н10Т против межкристаллитной коррозии определяется при испытании по методам AM и АМУ ГОСТ 6032-89 с продолжительностью выдержки в контрольном растворе соответственно 24 и 8 ч. Испытания проводят после провоцирующего нагрева при 650 °С в течение 1 ч.

Читайте также  Сварка труб ГОСТ 16037 80

При непрерывной работе нержавеющая сталь 12Х18Н10Т устойчива против окисления на воздухе и в атмосфере продуктов сгорания топлива при температуре до 900 °С. Нержавеющая сталь 12Х18Н10Т обладает достаточно высокой жаростойкостью при температурах 600-800 °С.

Нержавеющая сталь 12Х18Н10Т обладая хорошей технологичностью может подвергаться значительным пластическим деформациями. Температурный интервал обработки нержавеющей стали 12Х18Н10Т давлением составляет 1180-850 °С, скорость нагрева и охлаждения не лимитируется. В холодном состоянии допускают высокие степени пластической деформации.

Сварка нержавеющей стали 12Х18Н10Т

Основной проблемой при сварке аустенитных нержавеющих сталей является прокаливание, которое вызывает в них структурные изменения, приводящие к снижению стойкости против межкристаллитной коррозии.

Для снижения подобных рисков в состав хромоникелевых нержавеющих сталей вводят титан или ниобий. Легированные титаном нержавеющие стали хорошо свариваются, при условии исключения последующей термообработки.

Хромоникелевая нержавеющая сталь 12Х18Н10Т хорошо сваривается всеми видами ручной и автоматической сварки. Электросварку можно производить контактной сваркой, сваркой неплавящимся вольфрамовым электродом в защитной среде аргона, полуавтоматической сваркой в защитной среде из смеси аргона с углекислым газом, сваркой отдельными, покрытыми электронами.

Для обычной автоматической сварки под флюсами АН-26, АН-18 и аргонодуговой сварки используют специальную проволоку для сварки «нержавейки», например Св-08Х19Н10Б, Св-04Х22Н10БТ, Св-05Х20Н9ФБС и Св-06Х21Н7БТ.

Для ручной сварки нержавеющей стали используют электроды для «нержавейки» типа ЭА-1Ф2 марок ГЛ-2, ЦЛ-2Б2, ЭА-606/11 с проволокой Св-05Х19Н9ФЗС2, Св-08Х19Н9Ф2С2 и Св-05Х19Н9ФЗС2. Это обеспечивает стойкость шва против межкристаллитной коррозии. Сварочные электроды для «нержавейки» обычно короче, чем электроды для обычной стали, так как их электрическое сопротивление выше.

Так же возможно сваривание деталей из нержавеющей стали и обычной стали, но в этом случае необходимо использовать т.н. «переходные» электроды. В этом случае требуется, чтобы металл сварочного шва был из нержавейки, поэтому и используются переходные электроды, содержащие повышенное содержание легирующих элементов.

Особую маркировку имеют сварочные электроды, предназначенные для сварки нержавеющей стали, предназначенной для использования в пищевой промышленности. Применение правильных сварочных материалов обеспечивает сохранность высоких коррозионных свойств как против общей, так и межкристаллитной коррозии.

Аустенитная сталь

Аустенитная сталь – одна из модификаций железа с высокой степенью легирования. Обладает гранецентрированной кристаллической решеткой. Она легко сохраняет свою структуру даже при очень низких температурах. Аустениты располагают высокими показателями прочности. Он устойчивы как высоким температурам и большим нагрузкам.

Свойства аустенитных сталей

Сталь аустенитного класса образует 1-фазную структуру во время процесса кристаллизации. Ее кристаллическая решетка не изменяется даже при резком охлаждении до отрицательных температур (–200 °C). Основными компонентами аустенитных железных сплавов являются хром и никель. От доли их содержания зависят технологичность, пластичность, прочность и жаростойкость материала. Для легирования применяют следующие материалы:

  1. Ферритизаторы: титан, кремний, молибден, ниобий. Они стабилизируют структуру аустенитов и формируют объемноцентрированную кубическую решетку.
  2. Аустенизаторы: азот, марганец и углерод. Они присутствуют в избыточных фазах, формирующихся во время термообработки железных сплавов.

По свойствам материалов аустенитные модификации железа делятся на следующие типы:

  1. Коррозионностойкие (нержавеющие). В их состав входит хром (18%), никель (30%) и углерод (0,25%). Эти высоколегированные стали применяются в промышленном производстве с 1910 г. Их главным преимуществом является устойчивость к коррозии. Материал сохраняет это свойство даже при сильном нагревании, что обусловлено низким содержанием углерода. Коррозионностойкие железные сплавы производятся, согласно ГОСТ 5632-2014. В них могут присутствовать добавки из кремния, марганца, и молибдена.
  2. Жаростойкие. Они обладают ГЦК-решеткой и устойчивы к воздействию высоких температур. Этот материал можно нагревать до 1100 °C. Жаропрочные аустенитные стали применяются при изготовлении печных устройств, турбин роторов электростанций и иных приборов, работающих при помощи дизельного топлива. При производстве данной модификации железа используются дополнительные добавки из бора, ниобия, ванадия, молибдена и вольфрам. Эти химические элементы повышают жаропрочность материала.
  3. Хладостойкие. В составе этих высоколегированных сталей присутствуют хром (19%) и никель (25%). Главным достоинством материала является высокая вязкость и пластичность. Также эта модификация железа располагает высокой стойкостью к коррозии. Хладостойкие металлы сохраняют данные свойства даже при резком понижении температуры. Их главным недостатком является низкая прочность во время работы при комнатной температуре.

Аустенитная высоколегированная сталь является одной из самых дорогих модификаций железа, потому что в них содержится большое количество дорогостоящих материалов: хрома и никеля. Также на ее стоимость влияет количество дополнительных легирующих компонентов, позволяющих создавать железные сплавы с особыми свойствами. Дополнительные элементы легирования подбираются в зависимости от сложности работ, где применяются аустенит.

В аустенитных сталях могут осуществляться следующие разновидности превращений:

  1. Образование феррита при нагреве железного сплава до высоких температур.
  2. При нагреве до температуры 900 °C из аустенита начинают выделяться избыточные карбидные фазы. Во время этого процесса на аустенитной поверхности образуется межкристаллическая коррозия, постепенно разрушающая материал.
  3. Во время охлаждения аустенита до температуры 730 °C происходит эвтектоидный распад. В результате образуется перлит – модификация железных сплавов. Его микроструктура представлена в виде небольших пластин или округлых зерен.
  4. При резком понижении температуры металлического изделия формируется мартенсит – микроструктура, состоящая из пластин игольчатого или реечного вида.

Время, требуемое для превращения аустенитной стали в иные модификации железа, определяется содержанием углерода в твердом растворе и количеством дополнительных легирующих компонентов. Чем ниже эти показатели, тем быстрее охлаждается металлическое изделие.

Методы получения аустенита

Стали аустенитного класса образуются в процессе появления и роста зерен исходной микроструктуры металлического изделия. Формирование аустенита осуществляется на поверхности раздела фаз феррита и карбида. Карбидные частицы постепенно растворяются в твердом растворе аустенита.

Получить аустенит также можно из эвтектоидной модификации железа, состоящей из феррита и цементита. Для этого исходную металлическую заготовку необходимо нагреть до температуры 900 °C. Важно, чтобы в сплаве присутствовала минимальная концентрация углерода, равняющаяся 0,66%. Во время этого процесса феррит превращается в аустенит, а цементит полностью растворяется. В итоге сформируется нержавеющая аустенитная сталь.

При производстве металлических заготовок из аустенитных сталей, стабилизированных титаном, необходимо в вакуумно-индукционной печи переплавить металл. Полученный расплав выдерживают в течение длительного периода для его деазотирования. Количество времени, требуемого для этого процесса, зависит от массы исходного изделия. После выдержки в расплавленный аустенит вводится смесь из титана и нитридообразующих химических элементов.

Для получения устойчивой аустенитной структуры в состав исходной модификации железа добавляются хром и никель. При этом важно соблюдать пропорции. Процентное содержание никеля должно составлять не менее 20%, хрома – не более 19%. Эти химические вещества повышают устойчивость аустенита к высоким температурам и большим нагрузкам. Также они увеличивают выделение карбидов. Материал становится коррозионностойким.

При добавлении хрома и никеля в состав железной модификации нужно выдерживать материал в течение более длительного времени. Очень часто в полученный раствор добавляется смесь из молибдена или фосфора. Эти химические вещества увеличивает вязкость и усталостную прочность железного сплава. Для снижения износа полученного аустенита используют дополнительные легирующие материалы и энергоемкие карбиды.

Применение сплавов

Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.

Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.

Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.

Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.

В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.

Марки аустенитной стали

Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:

  • 12Х18Н9Т;
  • 08Х18Н10Т;
  • 12Х18Н10Т;
  • 12Х18Н9;
  • 17Х18Н9;
  • 08Х18Н10;
  • 03Х18Н11.

Аустенизация стали 12х18н10т что это?

Одной из востребованных разновидностей нержавеющей стали остается аустенитная нержавеющая. Как следует из названия, такого типа материал устойчив к возникновению коррозии. Защитный эффект достигается путем добавления в состав обычных дополнений. Здесь в качестве таких материалов выступает хром и никель. Хрома в составе 18%, а никеля 10%. На поверхности создается тонкий слой, который препятствует внешнему воздействию агрессивных сред.

Как уже было сказано выше, качества стали зависит от двух центральных добавок, процент которых в составе наиболее высок:

  • Хром. Процент содержания хрома держится на уровне до 18%. Элемент обеспечивает повышенную устойчивость к возникновению коррозии при использовании в различных средах. Помимо этого, элемент гарантирует возможность для обеспечения пассивации. Если говорить про потенциально опасные среды, то сталь с добавлением хрома может держаться даже в окислительных. Кислота может отличаться по уровню концентрации и нагрева. Таким образом, удается обеспечивать длительное использование элементов без потери качества.
  • Никель. Такого материала в составе содержится в среднем 10%. При этом, содержание элемента не может быть менее 9% и более 12%. Никель добавлен в состав не случайно. С ним повышается технологичность, а склонность к появлению существенно снижается. Более того, материал приобретает высокие служебные свойства. Подобная рецептура помогает выдерживать не только агрессивную кислотную среду, но и перепады температур – как повышенной, так и пониженной.
Читайте также  Как убрать коррозию с алюминия?

Состав различных типов стали может отличаться – варьируется содержание элементов, а вместе с ним и многие другие эксплуатационные параметры.

Особенности фазовых превращений в сталях аустенитного типа

Существует сразу несколько разновидностей превращений, которые могут протекать в хромоникелевого типах стали.

Среди них выделяются 3:

  • образование в аустенитной основе δ-феррита при высокотемпературном нагреве;
  • выделение избыточных карбидных фаз и σ-фазы при нагреве в интервале в интервале 450-900 ºС;
  • образование α-фазы мартенситного типа при холодной пластической деформации или охлаждении ниже комнатной температуры.

Говоря о фазовых превращениях в стали, нельзя не коснуться такой важной темы, как появление межкристаллической коррозии. Склонность к ней особенно ярко проявляется, когда происходит выделение карбидных фаз. Это отражается на том, как будет проводиться оценка стали. Стоит отталкиваться от термокинетических параметров образования в стали карбидов.

Для каждой разновидности материала определяется время, которое требуется для начала процесса межкристаллической коррозии. Оно привязано к проценту содержания углерода в твердом растворе. Чем выше содержание углерода, тем при большей температуре будет возникать межкристаллическая коррозия. Таким образом, удается применять различные варианты стали в областях, которые подвержены высоким температурам.

Зависимость времени и процента содержания углерода представлено в таблице ниже:

Содержание углерода в твердом растворе

Время появления межкристаллической коррозии

Свыше 100 минут.

Чем меньше процент содержания углерода, тем ниже будет температура, связанная с показателями минимальной изотермической выдержки. Таким образом, при покупке стоит сразу понимать, в каких температурных условиях вы будете использовать такого типа материал. Межкристаллическая коррозия способна оказать серьезное негативное воздействие на материал и привести к его постепенному разрушению, потому выбирать стоит внимательно, ориентируясь на данные приведенной выше таблицы.

Особенности процесса сварки сталей аустенитного типа

Вопрос о том, как сваривать различные виды нержавеющих материалов всегда остро стоит перед покупателями. Проведение сварки предполагает соблюдение правил, защищающих от коррозийного растрескивания и измерения параметров материала.

То, насколько безопасной для материала будет сварка, определяет уже упомянутый параметр межкристаллической коррозии. Чем выше уровень стойкость, тем более толстые сечения можно будет сваривать между собой.

В ситуации с необходимостью проведения варки рассматривается способность стали выдерживать повышенные температуры. Межкристаллическая коррозия при 500-600 градусах достигается только в том случае, если содержание углерода не превышает показатель в 0,006%. Это нужно учитывать при работе, в том числе, при использовании в областях с высокими параметрами нагрева.

Как дополнительно стабилизировать сталь?

Вопрос о стабилизации состояния стали не менее актуален, чем о сварке. Чтобы обеспечить стабилизацию применяется титан и ниобий. Введение в состав сплава таких элементов направлено на появление карбидных фаз. На то, какого типа карбиды будут выделены в процессе использования, напрямую влияет температура. Чтобы получить специальные карбиды, потребуется вести работы при температуре более 700 ºС. Важно понимать, что появление специальных карбидов, таких, как TiC и NbC не ведет к повышению склонности к межкристаллической коррозии. Таким образом, стабилизировав состояние нержавеющей стали. Можно сделать её прочнее и защитить от целого ряда негативных потенциальных последствий использования.

Особенности воздействия азота, хрома и никеля на состояние стали и её характеристики

Помимо уже упомянутого углерода, существует и еще ряд элементов, напрямую влияющих на свойства нержавеющей стали такого типа. Один из центральных – азот. Он появляется при изометрической выдержке или охлаждении. Азот способен замещать в составе карбидов углерод. При изготовлении коррозионно-стойких разновидностей материала это свойство остается очень важным. И главная причина – не столь сильное влияние азота на склонность к межкристаллической коррозии. Чтобы такая склонность появилась, содержание азота в структуре должно быть не менее 0,15%. Введение азота в структуру способно повысить прочность материала. Это используется на производстве для увеличения продолжительности срока службы и эксплуатационных характеристик.

О влиянии хрома на состояние материала уже говорилось выше. Рассмотрим содержание материала в контексте его взаимодействия с углеродом. Здесь существует пропорция – чем больше хрома, тем меньше растворимость углерода. Повышение процента хрома актуально в том случае, когда нужно упростить процесс выдерживания карбидной фазы.

При введении хрома уменьшается такой параметр, как ударная вязкость. Это объясняется с тем, что по границам зерен начинает образовывать карбидная секта.

Применение хрома – это еще один способ снизить склонность материала к развитию межкристаллической коррозии. Чем более хромированная перед вами сталь, тем лучше она будет выдерживать коррозийное воздействие.

Помимо азота и хрома, значимым в работе с углеродом остается и никель. Он также снижает растворимость углерода и ударную вязкость материала. Как и в случае с хромом, повышение концентрации никеля улучшает показатели стали. В том числе, в вопросе противодействия потенциальном образовании межкристаллической и других типов коррозии.

Главные особенности легирующих элементов

В стали содержится большое количество, так называемых, легирующих элементов. Они оказывают влияние на саму структуру материала, особенно при нагревах до высоких температур. Все представленные легирующие элементы подразделяются на две центральные разновидности. Среди них:

Вопрос о присутствии феррита стоит рассматривать на примере дельта-феррита. Его наличие в структуре дает отрицательный эффект и снижается технологичность. При появлении дельта-феррита сложно будет создавать прочные и защищенные от негативного воздействия изделия при прокатке, штамповке и ковке – везде, где применяются высокие температуры и повышенное давление на создаваемые элементы.

То, сколько феррита будет в стали, зависит от содержания никеля и хрома. В зависимости от группы сталей отличается и склонность к образованию дельта-ферритта. Среди стабильных материалов называют Х18Н11 и Х18Н12 марки. Остальные в той или иной степени меняют свою структуру при нагреве до высоких температур и оказываются склонными к появлению ферритов.

Помимо феррита, важным остается и образование аустенита. Чем больше в материале никеля, азота, углерода и хрома, тем меньше вероятность начала мартенситного превращения в результате снижения температур и различных проявления пластической деформации. Сложнее определить влияние таких элементов как ниобий и титан, традиционно связываемых с улучшением качества стали и её стабилизацией. В твердом растворе элементы повышают устойчивость к мартенситному превращению. Важным фактором здесь оказывается связь присутствующих элементов. Если они входят в состав карбонитридов, тогда температура мартенситного превращения оказывается выше.

Основные возможности и требования к термической обработке сталей

Решение вопроса о правильной термической обработке стали связано с определением её марки и состава. Для хромоникелевых аустенитных сталей возможно два варианта обработки – закалка и стабилизирующий обжиг.

Сами параметры отличаются для сталей, которые уже прошли стабилизацию с введением титана и ниобия или же остались без стабилизации. При использовании закалки удается достичь большего уровня защиты от появления межкристаллической коррозии. Сама сталь при этом становится прочнее и лучше защищается от внешнего воздействия агрессивных сред – это стоит учитывать при выборе.

Процесс стабилизирующего отжига также направлен на улучшение состояния материала. В частности, он влияет на состояние карбидов хлора. Главная цель использования – перевести карбиды хлора в состояние, которое не будет представлять опасности появления межкристаллической коррозии. Помимо этого, процесс помогает перевести карбиды хлора в специальные карбиды для стабилизированных сталей.

Рассмотрим оба процесса более подробно:

1. Закалка. Этот процесс предполагает нагрев выше той температуры, при которой карбиды хлоров начинают растворяться. После того, как нагрев до установленных показателей был произведен, начинается быстрое охлаждение. Чем выше в стали содержание углерода, тем выше будут температуры, необходимые для его обработки. Если рассматривать минимальные и максимальные, нагрев не должен быть до температуры менее 900 градусов. В то же время при закалке редко повышается температура до более чем 1100 градусов Цельсия.

Закалка напрямую связана с таким понятием, как длительность выдержки. Этот параметр отличается в зависимости от типа материала и температуры, до которой они нагреваются. Учитываются показатели толщины.

После того, как выдержка была произведена, происходит не менее значимый процесс – охлаждение. Оно обязательно должно быть быстрым. Сам принцип охлаждения отличается для стабилизированных и нестабилизированных типов стали с разным содержанием углерода. Они пользуют варианты с охлаждением в воде и в воздухе.

2. Стабилизирующий отжиг. Еще одна важная разновидность процессов, которым подвергается сталь для улучшения эксплуатационных показателей. Процесс отличается в зависимости от того, в каком типе стали он проводится.

  • Для нестабилизированных. Температурный интервал отжига варьируется между температурой стандартного нагрева при провидении закалки и той отметки, при которой у материала начинается образовываться межкристаллическая коррозия. На то, насколько велик будет такой интервал, влияет содержание в стали добавок. В частности, концентрации хрома.
  • Для стабилизированных. В таких сталях отжиг ведется специально для того, чтобы перевести карбиды хрома в другое состояние. Хром освобождается и таким образом стойкость материала к коррозии существенно увеличивается. Температура проведения процедуры редко превышает 950 градусов.

Особенность коррозийной стойкости при использовании в кислотных средах

Одна из причин, по которым аустенитные стали получили большое распространение, оказывается стойкость к использованию материала в азотной кислоте. Здесь показатели меняются при различном уровне стойкости и меняются в зависимости от того, какая разновидность стали была выбрана.

Для лучшего отражения показателей, при которых материал получает первый балл стойкости. Мы составили приведенную ниже таблицу:

Тип кислотной среды с процентным содержанием

Оцените статью
Добавить комментарий