Что легче титан или алюминий?

Алюминий против титана В мире, в котором мы живем, есть множество химических элементов, которые отвечают за состав всех неживых вещей вокруг нас. Большинство из этих элементов являются естественными, то есть они происходят естественным образом, тогда как остальные являются синтетическими; то есть они не происходят естественным образом и искусственно

Что легче титан или алюминий?

Алюминий и титан 2021

Алюминий против титана В мире, в котором мы живем, есть множество химических элементов, которые отвечают за состав всех неживых вещей вокруг нас. Большинство из этих элементов являются естественными, то есть они происходят естественным образом, тогда как остальные являются синтетическими; то есть они не происходят естественным образом и искусственно создаются. Периодическая таблица является очень полезным инструментом при изучении элементов. На самом деле это табличное устройство, которое отображает все химические элементы; организация основана на атомном номере, электронных конфигурациях и некоторых конкретных повторяющихся химических свойствах. Два элемента, которые мы собрали из таблицы для сравнения, — алюминий и титан.

Начнем с того, что алюминий является химическим элементом, который имеет символ Al и находится в группе бора. Он имеет атомный 13, т. Е. Имеет 13 протонов. Алюминий, как многие из нас знают, относится к категории металлов и имеет серебристо-белый вид. Он мягкий и пластичный. После кислорода и кремния алюминий является третьим наиболее распространенным элементом в земной коре. Он составляет почти 8% (по массе) твердой поверхности Земли.

С другой стороны, титан также является химическим элементом, но он не является типичным металлом. Он относится к категории переходных металлов и имеет химический символ Ti. Он имеет атомный номер 22 и имеет серебристый вид. Он известен своей высокой прочностью и низкой плотностью. То, что характеризует титан, является тот факт, что он очень устойчив к коррозии в хлоре, морской воде и водной воге.

Сравним два элемента по их физическим свойствам. Алюминий — ковкий металл и легкий. Приблизительно алюминий имеет плотность, которая составляет примерно одну треть от объема стали. Это означает, что при том же объеме стали и алюминия последний имеет одну треть массы. Эта характеристика очень важна для ряда применений алюминия. Фактически, это качество с низким весом является причиной того, что алюминий настолько широко используется при создании самолетов. Его внешний вид варьируется от серебра до тускло-серого. Его фактический внешний вид зависит от шероховатости поверхности. Это означает, что цвет становится ближе к серебру для более гладкой поверхности. Более того, он не является магнитным и даже не легко воспламеняется. Алюминиевые сплавы широко используются из-за их прочности, которые намного превосходят прочность чистого алюминия.

Титан характеризуется высоким отношением прочности к весу. Он довольно пластичный в среде, свободной от кислорода, и имеет низкую плотность. Титан имеет очень высокую температуру плавления, которая даже больше, чем 1650 градусов по Цельсию или 3000 градусов по Фаренгейту. Это делает его очень полезным в качестве тугоплавкого металла. Он имеет довольно низкую тепловую и электрическую проводимость и является парамагнитным. Коммерческие сорта титана имеют прочность на растяжение около 434 МПа, но менее плотные. По сравнению с алюминием титан примерно на 60% плотнее. Однако он имеет двойную прочность алюминия. Оба имеют очень разную прочность на растяжение.

Резюме различий, выраженных в пунктах

  1. Алюминий представляет собой металл, тогда как титан является переходным металлом
  2. Алюминий имеет атомное число 13 или 13 протонов; Титан имеет атомное число 22 или 22 протонов
  3. Алюминий имеет химический символ Al; Титан имеет химический символ Ti
  4. Алюминий является третьим наиболее распространенным элементом в земной коре, тогда как титан является девятым наиболее распространенным элементом
  5. Алюминий не является магнитным; Титан является парамагнитным
  6. Алюминий дешевле по сравнению с титаном
  7. Характерной особенностью алюминия, который очень важен в его использовании, является его легкий вес и низкая плотность, что на одну треть меньше, чем у стали; характерной особенностью титана, которая важна в его использовании, является его высокая прочность и высокая температура плавления, выше 1650 градусов по Цельсию
  8. Титан имеет двойную прочность алюминия
  9. Титан примерно на 60% плотнее алюминия
  10. Алюминий имеет серебристо-белый внешний вид, который варьируется от серебристого до тускло-серого в зависимости от шероховатости поверхности (обычно больше по сравнению с серебром для более гладких поверхностей), тогда как титан имеет серебряный вид

Как отличить титан от нержавеющей стали и алюминия

Отличить титан от нержавеющей стали аустенитного класса или алюминия довольно сложно. Особенно если у вас имеется один образец и сравнивать не с чем. Все три металла являются парамагнетиками и не реагируют на магнит, имеют серебристый цвет и похожий удельный вес. Но есть несколько простых и проверенных способов отличить титан от легированной стали и алюминия в домашних условиях без специального оборудования.

Доступный и простой способ — поцарапать металлом стекло

Если коротко

  • Титан не поцарапает стекло, но оставит полоску
  • Нержавейка поцарапает, но не оставит темного следа
  • Алюминий не оставить никаких следов

Пояснение, детали

Метод основан на способности титана оставлять характерные темные следы на поверхности стекла и кафельной плитки. При этом металл не царапает стекло, а именно рисует на его поверхности. Смыть такой след можно только раствором плавиковой кислоты (HF). А нержавеющая сталь может поцарапать стекло, но темного следа не оставит. Алюминий вообще не способен нанести никаких повреждений.

Отличить титан по искре

Если коротко

  • Титан: даст много искр ярко-белого цвета
  • Нержавейка: меньше искр желтого или красного оттенка, или искр вообще нет
  • Алюминий: не даст искру

Пояснение, детали

Во время обработки титана на точильном станке или при резком продольном трении по абразивной поверхности точильного камня контакт металла сопровождается россыпью искр ярко-белого цвета. При отсутствии абразива можно использовать мелкий напильник или даже простой бетон, хотя эффект будет меньшим.

Искры от нержавеющей стали имеют желтый и красный оттенок. Их вылетает намного меньше, а на бетоне и напильнике не будет совсем. Некоторые сорта нержавеющих сталей были разработаны, как пожаробезопасные. Искрообразование во время обработки таких металлов невозможно технологически. При трении алюминия по образивной поверхности искры не выделяются, но могут оставаться характерные серебристые следы на поверхности.

Такой тест на возможность образования искр наиболее популярный и простой, поскольку цвет действительно отличается очень сильно, а их полное отсутствие сразу говорит о том, что этот металл не титан.

После того, как вы определите какой именно металл перед вами вы можете сдать его по выгодной цене:

  • Титан за 200 – 1000 руб/кг
  • Нержавека за 60 – 90 руб/кг
  • Алюминий за 40 – 98 руб/кг

Проверка на гальваническую реакцию

Для проведения этого теста потребуется источник постоянного тока с напряжением около 12 В. Это может быть автомобильный аккумулятор или преобразующий трансформатор. Соедините через провод плюс батареи с исследуемым образцом, а минус с металлическим стержнем, на конце которого намотана вата, марля или кусок хлопчатобумажной ткани. Намочите вату слабым раствором соляной кислоты или обычной кока-колой.

Если это титан, то при прикосновении к металлу его поверхность будет окрашиваться в результате образования оксидной пленки. Цветовой оттенок зависит от величины напряжения, концентрации кислоты в растворе и времени воздействия. Нержавеющие сплавы и алюминий данной реакции не подвержены.

Сравнение удельного веса — способ, требующий точных измерений

Всем известно, что алюминий это самый легкий из этих трех металлов, а сталь самая тяжелая. Но как определить, если у вас один образец и сравнивать не с чем? Это можно сделать путем измерений и вычисления плотности или удельного веса материала, который примерно составляет:

  • 2,7 г/см3 для алюминия;
  • 4,5 г/см3 у титана;
  • 7,8 г/см3 у нержавейки.

Этот способ определения требует наличия точных весов и емкости для погружения образца в воду.

После взвешивания металла необходимо определить его объем. Проще всего воспользоваться для этого, известным со школы законом Архимеда, погрузив образец в жидкость. Изменение уровня воды покажет искомую величину.

Это более сложный и длительный вариант определения и поэтому используют его очень редко. Но он тоже дает результаты и должен рассматриваться.

Специфические способы определить титан

В отдельных случаях определение металла можно произвести простыми и весьма оригинальными способами:

  • Подожгите металл
    Титановая стружка довольно легко воспламеняется и горит
  • Нагрейте металл
    Этот металл хороший теплоизолятор и при нагреве одного края образца остальная часть будет холодной
  • Подержите в руках
    Низкая теплопроводность дает ощущение теплого предмета в руках в отличие от холодной стали и алюминия
  • Ударьте молотком
    И последнее, ударьте по образцу молотком, в результате на стали следов не останется, на титане образуется небольшая вмятина, а алюминий пострадает больше всего.

Насколько надежны эти методы?

Приведенные методы достаточно надежные и часто используюстся специалистами по приему металлолома. Однако стоит учитывать, что точное определение химического состава сплава, особенно при наличии примесей, может быть выполнена только с использованием специального оборудования.

Он вдвое легче, но и вдвое прочнее железа, в 6 раз прочнее алюминия

В земной коре его много -0,63%.

Лишь три технически важных металла – алюминий, железо и магний распространены больше, чем титан. количество титана в земной коре в несколько раз превышает запасы ( меди, цинка, свинца, серебра, золота, платины, хрома, вольфрама, молибдена, никеля , олова, сурьмы) вместе взятых.

Коррозионную прочность титана можно сравнить только с серебром и золотом. На пластинке из титана за 10 лет пребывания в морской воде не появилось и следов коррозии. На его поверхности легко образуется окисная пленка — поэтому высокая коррозионная стойкость.

Ему нипочем океанские глубины, межпланетный вакуум, сверхнизкие температуры космического пространства, жар аэродинамического нагрева.

Титан можно обрабатывать давлением и резанием, сваривать в среде аргона. изготавливать детали литьем, обработка резанием его затруднена.

Титан имеет очень высокую удельную прочность.

* Широкое применение титана сдерживается его высокой стоимостью, которая обусловлена сложностью извлечения его из руд.

* В отличие от многих металлов титан обладает значительным электросопротивлением.если электропроводность серебра принять за 100%. меди 94%, алюминия 60%, железо 15%, титана -3,8%. Это свойство очень важно для радиоэлектроники и электротехники.

Поставляется титан в виде листов, труб, прутков, поковок, штамповок.

Технический титан изготавливается 3-х марок:

* ВТ1-00 ( 99,53% Т )

* ВТ1-0 ( 99,48% Т )

* ВТ1-1 ( 99,44% Т )

Вредными примесями для титана являются : азот, углерод, кислород и водород, они снижают пластичность и свариваемость, повышают твердость, ухудшают сопротивление коррозии.

Технический титан имеет: σ = 300-500 МПА

δ= 20-30%

Чем больше примесей,тем больше прочность и меньше пластичность титана.

Сплавы на основе титана

Для получения сплавов титан легируют алюминием, молибденом, ванадием, марганцем, хромом, железом, ниобием и др.

Удельная прочность титановых сплавов выше, чем у легированных сталей.

Легирующие элементы оказывают большое влияние на температуры полиморфного превращения титана.

* Так, алюминий, кислород, азот — повышают температуру и расширяют — область. их называют -стабилизаторами.

* Молибден, ванадий, марганец, хром, железо —понижают температуру полиморфного превращения. их называют стабилизаторами.

Все промышленные сплавы титана содержат алюминий.

Титан и его сплавы

В соответствии со структурой различают следующие сплавы титана:

1. α-сплавы .Структура их α— твердые растворы л.э. в титане. основной легирующий элемент — алюминий.

ВТ5 —5% алюминия σв = 750-900 Мпа δ =10%

2. α + β -сплавы.Структура их — α иβ твердые растворы. кроме алюминия. они содержат 2-4% стабилизаторов

ВТ6( 6% алюминия, 4% ванадия) σв =900-1070Мпа δ =6-9%

3. β -сплавыструктура их β — твердый раствор. Содержат большое количество стабилизаторов.

ВТ32( 2% алюминия, 8% молибдена, 8% ванадия ,1% хрома, 1% железа )

σв = 800-900 Мпа δ =6-15%

Термическая обработка титановых сплавов

Титановые сплавы в зависимости от состава и назначения можно подвергать:

* -закалке и старению

* Титан и альфа сплавы титанане подвергаются упрочняющей термообработке, их подвергают рекристаллизационному отжигу от температуры 650 -850°, это обеспечивает повышение пластичности.

* альфа +бетта сплавы титанамогут быть упрочнены закалкой с последующим старением. при быстром охлаждении протекает сдвиговое мартенситное превращение. мартенсит здесь- пересыщенный твердый раствор легирующего элемента в альфа-титане. Температура закалки 750-950 °

Для увеличения износостойкости сплавы титана азотируют.

Применение титановых сплавов

Титановые сплавы как высокопрочные конструкционные материалы широко применяют с следующих областях:

* Авиации и ракетостроении — это корпуса двигателей, обшивки самолетов, баллоны для газов, сопла, диски и лопатки турбин, детали крепежа фюзеляжа. В самолете ТУ 154 несколько тысяч важнейших деталей сделано из сплавов титана

* Морское и речное судостроение — гребные винты, обшивки подводных лодок. судов, торпед

* Химической промышленности — оборудование для таких сред как хлор, кислоты, вентили для агрессивных жидкостей и т.п.

* Криогенной технике

* Сплавы титана обладают эффектом памяти — нитинол — сплавы титана с никелем. Изделие можно изогнуть. скрутить, а потом выпрямить. При нагреве оно воспроизведет свою форму.

Несмотря на то, что сплавы дороги, применение их в промышленности экономически выгодно, так. корпус химического реактора из нержавеющей стали служит 6 месяцев, а из сплавов титана — 10 лет

змеевик медный оцинкованный служит 10 месяцев, а титановый — 10 лет

Применяют и биметаллы сталь- титан

Магний и его сплавы

Магний также, как и алюминий и титан относится к материалам с малой плотностью.

Магний — металл серебристо-белого цвета, (под действием окисления поверхность магния тускнеет и становится матовой) не имеет полиморфных превращений и кристаллизуется в плотноупакованную гексагональную решетку.

* Плотность магния — 1,7 г/смз

* Магний в 1,5 раза легче алюминия, в 4,5 раза — железа, в 5 раз легче.

* Температура плавления магния — 651 °С

Магний обладает способностью легко воспламеняться. Вспыхивая, магний ярким светом, выделяя большое количество тепла.Поэтому магний находит широкое применение в пиротехнике, в военном деле при производстве сигнальных ракет, зажигательных бомб.

Магний нельзя гасить водой, т.к. будет взрыв.

* Легкая воспламеняемость магния способствовала тому, что многие считают, что изделия из магния опасны в пожарном отношении. Это не так.

* Магниевая пыль, стружка, порошок — они действительно опасны, а изделия, слитки — не опасны. чем больше масса, тем тепло быстрее растекается по всей массе материала. Магний имеет очень хорошую теплопроводность.

* Магний плохо сопротивляется коррозии — деталь толщиной 3 см будет полностью «съедена» морем за 3 месяца. Поэтому магний и его сплавы нужно защищать от коррозии.

Магний и его сплавы

Литой магний имеет σв =120Мпа δ =5% 30НВ

Деформированный σв = 250 Мпа δ=10% 50НВ

Технический магний выпускается 3-х марок:

* МГ90 ( 99,9% магния)

* МГ95 (99,95 %)

* МГ96 (99,96%)

Магний может быть использован в химической промышленности, в металлургии как раскислитель, легирующий элемент и т.п.

Как конструкционный материал чистый магний не применяется, а для этой цели используются сплавы магния

Сплавы магния

Достоинством магниевых сплавов является их высокая удельная прочность. σв = 250-400 Мпа. По степени прочности на единицу своего веса они превосходят легированные стали и композиции на основе алюминия, уступая в этом лишь титановым сплавам

Поэтому сплавы магния употребляются для изготовления наиболее металлоемких деталей двигателя, корпуса компрессоров, коробок скоростей, корпуса приборов. В самолетах типа Ту154 насчитывается более 2-х тонн деталей из магниевых сплавов.

Магниевые сплавы очень хорошо поглощают вибрацию

Их удельная вибрационная прочность почти в 100 раз выше, чем у лучших алюминиевых сплавов, в 20 раз лучше, чем у алюминиевых сплавов

Магниевые сплавы хорошо обрабатываются резанием

Они обладают высокой хладностойкостью. От внезапного похолодания внезапно разрушаются многие конструкции- мосты. магистральные трубопроводы. суда. при морозе сталь делается хрупкой, хладноломкой.

Основным легирующим элементом в магниевых сплавах является алюминий ( до 10%) затем цинк (5-6%), марганец (до 2,5%)

По технологическому признаку сплавы магния можно разделить на 2 группы:

* -литейные —МЛ

* деформированные –МД

Литейные магниевые сплавы — МЛ5,МЛ6,МЛ10 , в их составе магний, алюминий, цинк.

Высокие литейные свойства, применяют для нагруженных крупногабаритных изделий, корпуса, конструкции в автомобилях — особенно гоночных. приборостроении.

Деформируемые магниевые сплавы МА1, МА2 —изготавливаются в виде горячекатанных листов, прутков, профилей, поковок, штамповок.

Сплавы, имеющие гексагональную решетку низкопластичны, поэтому ОМД ведут при повышенных температурах.

Химический состав их близок к литейным.

МА1 имеет σв =210Мпа

Лекция 16

«НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ»

Древние философы разделили весь мир на три царства: минеральное, растительное и животное. Но человек создал еще и четвертое — царство искусственных материалов и, пожалуй, самым удивительным изобретением человека стали пластмассы.

Представьте, что из окружающего нас мира исчезли бы пластмассы.

Тогда не стало бы не только привычных вещей в нашем доме, но и космических полетов, сверхзвуковых самолетов, глубоководных батискафов, современных телевизоров, всякого рода бытовых мелочей — полиэтиленовых мешочков, крышей — всего не перечислишь. Просто говоря, без пластмасс техника и наш быт вернулись бы в начало двадцатого века.

О значении пластмасс в развитии материального производства красноречиво говорит тот факт, что уже в 60-е годы мировой объем производства пластмасс значительно превысил выпуск цветных металлов.

Сейчас пластмассы не просто с успехом заменяют многие металлы, но и сами стали незаменимыми материалами во многих самых различных отраслях техники, пищевой промышленности, строительстве. сельском хозяйстве и т.п.

Карбон,титан или алюминий?

Попробуем взглянуть на выбор велосипедной рамы немного с другой стороны, нежели цена. То есть, рассмотреть материал для ее изготовления, основываясь на физических и прочностных характеристиках материалов.

Для этого обратимся к некоторым терминам и определениям физики твердого тела, а именно теории упругости.

Правильный выбор материала является сложной задачей, однозначное решение которой позволяет оптимизировать технологию изготовления, повысить долговечность конструкции в целом. Сейчас для производства велосипедных рам класса hi- end используются только три конструкционных материала: алюминий, титан и карбон. Первые два – это металлические сплавы, а последний — композиционный материал на основе углеволокна и эпоксидного связующего.

Основной механической характеристикой конструкционного материала является предел прочности. Это отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в месте разрыва. Для карбона (на основе углеволокна Т700) эта величина порядка 1500 МПа, для титанового сплава (3 Al/2.5 V) порядка 800 МПа, для алюминия (6061) порядка 60 МПа. В скобках приведены марки, наиболее часто используемые в велосипедной индустрии.

Следующая важная характеристика – предел текучести, напряжение при котором начинает возникать пластическая деформация, другими словами, при разгрузке от которого возникает остаточная деформация заданной величины. Для карбона такие данные не приводятся, для титана порядка 300 МПа, для алюминия порядка 20 МПа.

Ну и в завершение насколько слов о плотности. Чем меньше плотность, тем легче материал. Плотность карбона около 2 г/см3, титана 4,5 г/см3, алюминия 2,7 г/см3.

Из вышесказанного следует, что у каждого материала есть свои сильные и слабые стороны. Однако, для велосипедной специфики нельзя выделить какое то одно определяющее свойство материала. Например, при лучших прочностных/весовых характеристиках, карбон очень хрупкий и боится ударов и царапин. Алюминий легкий, но пластичный и с низкими прочностными свойствами. Титан прочный и упругий, но сравнительно тяжелый.

Истинная картина проясняется, если рассмотреть свойства каждого материала в целом. Тогда бесспорным лидером становится титан. Это обьяснимо.

Причиной разрушения велосипедной рамы являются не чрезмерные нагрузки, а накопление в процессе эксплуатации изделия мелких внутренних повреждений (которые принято называть трещинками или дислокациями), спровоцированное периодическим влиянием внешних сил (напряженного состояния). Определяющей характеристикой металла, так или иначе реагировать на напряженное состояние, является пластичность.

Пластичность металла есть функция его состояния, зависящая от внешних и внутренних факторов, которая выражается в способности твердых тел необратимо менять свою форму без разрушения под действием приложенных сил. Другими словами, существует некоторая максимальная величина нагрузки, при достижении которой происходит разрыв межмолекулярных связей кристаллической решетки металла, что ведет к образованию внутренних дефектов структуры, которые не могут исчезнуть, а могут только накапливаться. Анализ показал, что у большинства конструкционных металлов наиболее типичным является разрушение, которое начинает развиваться задолго до достижения такой максимальной нагрузки. Виной тому циклические нагрузки. При этом пластические деформации и разрушение оказываются связанными настолько тесно, что их можно рассматривать как единый процесс с общей энергией активации.

Установлено, что разрушению материала от усталости (при циклических нагрузках) предшествует накопление локальных микросдвигов и, следовательно, появление пластических деформаций, исчерпание которых приводит к местным разрушениям.

Всё это говорит о том, что пластичные металлы более подвержены накоплению неупругих деформаций (усталости) и следовательно ресурс их значительно ниже.

Физической характеристикой пластичности металла является предел текучести (условный предел текучести). Эта величина определяет усилие при котором в материале появляется пластическая деформация. Чем меньше предел текучести, тем пластичнее материал, а следовательно меньше его ресурс. Предел текучести алюминия в 15 раз меньше, чем у титана!

Ещё одной причиной разрушения конструкционных материалов являются внешние дефекты (царапины). Стойкость материала к царапинам определяется твердостью. Твердость титана по Бриннелю составляет 103 ед., а у алюминия 25 ед., то есть у титана она в 4 раза выше!

У титана, согласно этой характеристике, есть ещё одно большое достоинство – он очень долго сохраняет первоначальный внешний вид и легко его восстанавливает (с помощью дополнительной механической обработки).

Суммируя всё сказанное, получается, что применительно к велосипедной раме титан выглядит материалом практически идеальным. Также это можно сказать про сочетание титана и карбона (углепластика). Однако, дорогой читатель, окончательный выбор всё равно остаётся за Вами.

Удельный вес металла. Таблица плотности металлов и сплавов

Таблицы плотности металлов и сплавов

Все металлы обладают определенными физико-механическими свойствами, которые, собственно говоря, и определяют их удельный вес. Чтобы определить, насколько тот или иной сплав черной или нержавеющий стали подходит для производства рассчитывается удельный вес металлопроката. Все металлические изделия, имеющие одинаковый объем, но произведенные из различных металлов, к примеру, из железа, латуни или алюминия, имеют различную массу, которая находится в прямой зависимости от его объема. Иными словами, отношение объема сплава к его массе — удельная плотность (кг/м3), является постоянной величиной, которая будет характерной для данного вещества. Плотность сплава рассчитывается по специальной формуле и имеет прямое отношение к расчету удельного веса металла.

Удельным весом металла называется отношение веса однородного тела из этого вещества к объему металла, т.е. это плотность, в справочниках измеряется в кг/м3 или г/см3. Отсюда можно вычислить формулу как узнать вес металла. Чтобы это найти нужно умножить справочное значение плотности на объем.

В таблице даны плотности металлов цветных и черного железа. Таблица разделена на группы металлов и сплавов, где под каждым наименованием обозначена марка по ГОСТ и соответствующая ей плотность в г/см3 в зависимости от температуры плавления. Для определения физического значения удельной плотности в кг/м3 нужно табличную величину в г/см3 умножить на 1000. Например, так можно узнать какова плотность железа — 7850 кг/м3.

Наиболее типичным черным металлом является железо. Значение плотности — 7,85 г/см3 можно считать удельным весом черного металла на основе железа. К черным металлам в таблице относятся железо, марганец, титан, никель, хром, ваннадий, вольфрам, молибден, и черные сплавы на их основе, например, нержавеющие стали (плотность 7,7-8,0 г/см3), черные стали (плотность 7,85 г/см3) в основном используют производители металлоконструкций в Украине , чугун (плотность 7,0-7,3 г/см3). Остальные металлы считаются цветными, а также сплавы на их основе. К цветным металлам в таблице относятся следующие виды:

− легкие — магний, алюминий;

− благородные металлы (драгоценные) — платина, золото, серебро и полублагородная медь;

− легкоплавкие металлы – цинк, олово, свинец.

Удельный вес цветных металлов

Таблица. Удельный вес металлов, свойства, обозначения металлов, температура плавления

При прокате заготовок из цветных металлов необходимо еще точно знать их химический состав, поскольку от него зависят их физические свойства.
Например, если в алюминии присутствуют примеси (хотя бы и в пределах 1%) кремния или железа, то пластические характеристики у такого металла будут гораздо хуже.
Другое требование к горячему прокату цветных металлов – это предельно точная выдержка температуры металла. К примеру, цинк требует при прокатке температуры строго 180 градусов — если она будет чуть выше или чуть ниже, капризный металл резко утратит пластичность.
Медь более «лояльна» к температуре (ее можно прокатывать при 850 – 900 градусах), но зато требует, чтобы в плавильной печи непременно была окислительная (с повышенным содержанием кислорода) атмосфера — иначе она становится хрупкой.

Таблица удельного веса сплавов металлов

Удельный вес металлов определяют чаще всего в лабораторных условиях, но в чистом виде они весьма редко применяются в строительстве. Значительно чаще находится применение сплавам цветных металлов и сплавам черных металлов, которые по удельному весу подразделяют на легкие и тяжелые.

Легкие сплавы активно используются современной промышленностью, из-за их высокой прочности и хороших высокотемпературных механических свойств. Основными металлами подобных сплавов выступают титан, алюминий, магний и бериллий. Но сплавы, созданные на основе магния и алюминия, не могут использоваться в агрессивных средах и в условиях высокой температуры.

В основе тяжелых сплавов лежит медь, олово, цинк, свинец. Среди тяжелых сплавов во многих сферах промышленности применяют бронзу (сплав меди с алюминием, сплав меди с оловом, марганцем или железом) и латунь (сплав цинка и меди). Из этих марок сплавов производятся архитектурные детали и санитарно-техническая арматура.

Ниже в справочной таблице приведены основные качественные характеристики и удельный вес наиболее распространенных сплавов металлов. В перечне представлены данные по плотности основных сплавов металлов при температуре среды 20°C.

Список сплавов металлов

Плотность сплавов (кг/м 3 )

Адмиралтейская латунь — Admiralty Brass (30% цинка, и 1% олова)

Алюминиевая бронза — Aluminum Bronze (3-10% алюминия)

Баббит — Antifriction metal

Бериллиевая бронза (бериллиевая медь) — Beryllium Copper

Оцените статью