Электрохимзащита трубопроводов что это такое?

Применяемая электрохимическая защита (ЭХЗ) газопровода от коррозии осуществляется катодным способом с дренажной системой.
Содержание

Электрохимзащита трубопроводов что это такое?

Устройство электрохимзащиты для газопровода

Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.

Коррозия подземных трубопроводов и средства защиты от нее

На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.

  • Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
  • Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
  • Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.

Методы электрохимзащиты от коррозии:

  • пассивный метод;
  • активный метод.

Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:

  • битум;
  • полимерная лента;
  • каменноугольный пек;
  • эпоксидные смолы.

На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.

Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.

Принцип действия электрохимзащиты

Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.

В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.

Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.

Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.

Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.

Станция электрохимзащиты

Станция электрохимзащиты – это устройство, которое служит источником внешнего тока в системе катодной защиты. Данная установка подключается к сети, 220 Вт и производит электричество с установленными выходными значениями.

Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.

Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.

Типы станций катодной защиты:

  • трансформаторные;
  • инверторные.

Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.

Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей. Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери. В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.

Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.

При установке станции защиты от коррозии учитываются следующие параметры:

  • положение анодного заземления (анод-земля);
  • сопротивление грунта;
  • электропроводимость изоляции объекта.

Установки дренажной защиты для газопровода

При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.

Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.

Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.

Установки гальванической электрохимзащиты

Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.

Гальваническое оборудование служит для защиты от коррозии:

  • подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
  • отдельных незащищенных частей газопроводов;
  • частей газопроводов, которые изолированы от источника тока;
  • строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
  • прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).

Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.

Установки с протяженными или распределенными анодами

При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.

Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.

Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.

Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.

ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.

Видео: Защита от блуждающих токов

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь. Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла. В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя. Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами — 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Электрохимическая защита — основные понятия, принцип работы

Электрохимическая коррозия — распространенный вид коррозионного процесса, возникающий при взаимодействии металлоконструкции с окружающей средой. Явление вызвано термодинамической неустойчивостью металлов в окружающих их средах и наличия в них блуждающих токов.

Блуждающие токи, появляющиеся в грунте при его использовании как токопроводящей среды, несут с собой опасность для трубопроводов из металла. Под их воздействием трубы разъедает ржавчина, возникает течь — в результате металлические сооружения разрушаются и приходят в негодность.

Продлить период службы трубопроводов и прочих подземных металлических сооружений позволяет строительство электрохимзащиты. Это один из самых надежных способов предохранения металлоконструкций от электрохимической коррозии.

Понятие электрохимической защиты

Электрохимическая защита оборудования и сооружений из металлов — комплекс мероприятий, предпринимаемых с целью предотвращения коррозионных процессов, поддержания работоспособности защищаемых объектов в период эксплуатации. Основной результат от использования средств ЭХЗ — охрана инженерных коммуникаций от воздействия коррозии, влекущей огромные экономические потери из-за преждевременного износа оборудования.

Суть ЭХЗ состоит в управлении токами коррозии, всегда образующимися при контакте металлоконструкции и электролита. Посредством электрохимзащиты анодная разрушающаяся зона переходит с защищаемого объекта на анодное заземление или стороннее изделие из более активного металла. В результате смещения электродного потенциала металла распространение коррозии останавливается.

Главное при устройстве электрохимзащиты — обеспечить обязательный контакт защищаемого сооружения и внешнего анода с помощью металлического кабеля или контакта и электролита. Электрическая цепь, в которую входит защищаемый объект, кабель ЭХЗ, анод и электролит, должна замкнуться — в противном случае защитного тока в системе не возникнет.

Типы ЭХЗ

Различают 2 вида ЭХЗ от коррозии:

  • анодная;
  • катодная и ее разновидность — протекторная.

Анодная

При анодной защите потенциал металла смещается в положительную сторону. Ее эффективность зависит от свойств металла и электролита. Методика используется для конструкций из углеродистых, высоколегированных и нержавеющих сталей, титановых сплавов и различных пассивирующихся металлов. Такая ЭХЗ отлично решает поставленные задачи в средах, хорошо проводящих ток.

Анодная электрохимзащита применяется реже, чем катодная, поскольку к защищаемому объекту выдвигается немало строгих требований. Однако у нее есть свои преимущества: значительное замедление скорости коррозионного процесса, исключение возможности попадания продуктов коррозии в среду или производимую продукцию. Оборудование ЭХЗ этого типа выбирают на основе малорастворимых элементов: платины, нержавеющих высоколегированных сплавов, никеля, свинца.

Анодная защита реализуется различными способами: смещением потенциала в положительную сторону посредством источника внешнего тока или введением окислителей в коррозионную среду.

Катодная

Катодная электрохимзащита используется в случаях, когда металлу не присуща склонность переходить в пассивное состояние. Ее суть заключается в приложении к металлоизделию внешнего тока от отрицательного полюса, поляризующего катодные участки, тем самым приближая показатель потенциала к анодным. Положительный полюс, который имеет источник тока, присоединяется к аноду, за счет чего коррозия защищаемого объекта минимизируется. При этом анод постепенно разрушается, требуя замены.

Катодная защита может быть реализована различными способами:

  • поляризация от внешнего источника электротока;
  • снижение скорости протекания катодного процесса;
  • контакт с металлом, потенциал коррозии у которого в этой среде более электроотрицательный.

Поляризация от источника электротока, расположенного снаружи, часто используется при защите конструкций, находящихся в воде или почве. Этот вид системы ЭХЗ применяется для олова, алюминия, цинка, углеродистых и легированных сталей. В качестве внешнего источника тока выступают станции катодной защиты.

Протекторная

Строительство ЭХЗ протекторного типа подразумевает применение протектора. В этом случае к защищаемому сооружению присоединяют металл, имеющий более электроотрицательный потенциал. В результате разрушается не металлический объект, а протектор, который постепенно корродирует и требует замены на новый.

Данный тип электрохимзащиты эффективен в тех случаях, когда переходное сопротивление между окружающей средой и протектором небольшое. У каждого протектора есть свой радиус действия — это максимальное расстояние, на которое его можно удалить, не рискуя потерять защитный эффект.

Протекторная ЭХЗ применяется для предохранения от коррозионного разрушения сооружений, находящихся в нейтральных средах: в воздухе, почве, морской или речной воде. Протекторы для электрохимической защиты трубопроводов изготавливают из магния, цинка, алюминия, железа с дополнительным введением легирующих компонентов.

Для обеспечения высокого уровня протекторной защиты нужно правильно выбрать тип протектора в зависимости от объекта ЭХЗ (корпуса судов, резервуары с нефтепродуктами и пожарной водой, нефте газопроводы и другие металлоконструкции), а также важна среда где будет установлена протекторная группа (грунт, морская или речная вода, подтоварная вода). Данное условие является необходимым для обеспечения безопасности эксплуатации объекта ЭХЗ и увеличит эффективность протекторной защиты.

О станциях катодной защиты

Эффективное оборудование для ЭХЗ трубопроводов, расположенных под землей, — комплекс станции катодной защиты (СКЗ), состоит из следующих элементов:

  • станция катодной защиты;
  • анодные заземлители;
  • кабельные линии
  • пункт контроля и измерения;

Станции подключают к сети электроснабжения или автономным устройствам. Выходное напряжение на СКЗ может регулироваться вручную или в автоматическом режиме — по току защиты или потенциалу защищаемого объекта.

Строительство электрохимзащиты требует использования надежных составляющих системы. Наша компания предлагает широкий выбор качественного оборудования для защиты разных объектов. Оставьте заявку на сайте: мы вышлем вам прайс по оборудованию ЭХЗ и подробно проконсультируем по возникшим вопросам.

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Катодная защита от коррозии. Принцип действия, основные понятия.

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

История развития катодной защиты настолько занимательная глава, что я изложил ее в отдельной статье. Она не имеет практического значения. Просто интересно.

Для того чтобы защитится от коррозии, надо понять, что такое коррозия, природу ее происхождения.

Электрохимическая коррозия.

Коррозию можно определить как реакцию материала с окружающей средой, вызывающую в нем ощутимые изменения.

Изменения – понятие расплывчатое. Поэтому существует понятие коррозионного повреждения, основными признаками которого является нарушение функционирования объекта, например разрушение все той же металлической трубы. Не все реакции ведут к повреждению. Если труба станет коричневой или зеленой, но не будет протекать, это не будет считаться коррозионным повреждением.

Материалы и окружающая среда бывают разными. Бывают разными и реакции между ними. В основе коррозии могут лежать чисто химические реакции. Но вряд ли кого-либо заинтересует коррозия висмута в растворе дигидрофосфата натрия. Гораздо важнее знать о коррозии железной трубы, закопанной в землю.

Так вот, практический интерес имеет коррозия металлических материалов в водных средах, т.е. электрохимическая коррозия. В основе ее лежат реакции, имеющие электрохимическую природу.

В детстве я был любознательным мальчиком. Я проводил опыты по гальваническому осаждению меди на железные предметы, чем удивлял своих одноклассников. Но еще больше я поразил их, когда принес в школу лезвие от безопасной бритвы с вырезанной на нем сквозной надписью. Эффект я усилил сказав, что сделал это лазером. Конечно, я просто покрыл лезвие лаком, иголкой выцарапал надпись, опустил в жестяную банку с раствором соли, подключил электрический ток и немного подождал. Теперь я понимаю, что мои детские опыты были иллюстрацией того, как происходит электрохимическая коррозия и как от нее защититься. (Рассказ о моих детских опытах не художественный вымысел, а чистая правда.)

Итак, объекты процесса электрохимической коррозии:

  • среда – раствор электролита (почва всегда влажная, поэтому это тоже раствор электролита);
  • граница раздела среда-металл;
  • металл.

Все перечисленные объекты способны проводить электрический ток, обладают хорошей электропроводностью. В растворе электролита содержатся анионы и катионы. Они создают электрический ток. Ток протекает через участок металл – раствор электролита. За счет этого тока на границе раздела происходит электрохимическая реакция, на которую могут влиять еще и внешние токи. Влиять они могут по-разному, как усиливать коррозию, так и замедлять ее.

За счет тока на границе образуется разность потенциалов. Ее невозможно измерить. Поэтому измеряют потенциал специального электрода сравнения. Он является своеобразным суммарным показателем электрохимической реакции.

Физическое объяснение электрохимической коррозии выглядит так. В металле присутствуют ионы железа (положительно заряженные) и электроны (с отрицательным зарядом). Оба компонента реагируют с раствором электролита.

  • При положительном токе металл переходит в раствор, что связано с прохождения ионов и вызывает потерю массы металла (растворение металла).
  • При отрицательном токе в раствор проходят электроны, и происходит это без потери массы металла.

В первом случае происходит анодная, а во втором случае — катодная электрохимические реакции. Анодная реакция (растворение металла) вызывает коррозию. Катодная реакция является процессом обратным коррозии и используется в гальванотехнике для нанесения гальванических покрытий.

Принцип действия катодной защиты.

Понятно, что для защиты объекта от коррозии необходимо вызвать катодную реакцию и не допустить анодную. Сделать это можно, если искусственно создать отрицательный потенциал на защищаемом объекте.

Для этого необходимо разместить в среде (почве) анодные электроды и подключить внешний источник тока: минус к объекту защиты, а плюс – к анодным электродам. Ток пойдет по цепи анодный электрод – почвенный электролит – объект защиты от коррозии.

С точки зрения гальванических процессов металлический объект будет катодом, а дополнительный электрод – анодом.

Таким образом, коррозия объекта прекратится. Разрушаться будет только анодный электрод. Он называются анодным заземлением. Анодные электроды делают из инертного материала и периодически меняют.

Станция катодной защиты.

Ток для катодной защиты вырабатывает специальное устройство — станция катодной защиты.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило

220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, станции катодной защиты бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • выбирается место установки станции;
  • определяется тип, место расположения и параметры анодного заземления;
  • окончательно рассчитываются параметры станции катодной защиты.

Применение.

Катодная защита от коррозии получила широкое распространение для электрохимической защиты:

  • подземных газопроводов и нефтепроводов;
  • трубопроводов теплосетей и водоснабжения;
  • оболочек электрических кабелей;
  • крупных металлических объектов, резервуаров;
  • подземных сооружений;
  • морских судов от коррозии в воде;
  • стальной арматуры в железобетонных сваях, в фундаментах.

Применение катодной защиты обязательно для газопроводов низкого и среднего давления, магистральных газопроводов, нефтепроводов.

Электрохимическая защита от коррозии трубопроводов

На сегодняшний день электрохимическая защита от коррозии трубопроводов становится весьма актуальной темой, и это не случайно.

Трубопроводы из года в год становятся только длиннее, а учитывая всю важность поддержания их в достойном состоянии, приходится выбирать между их постоянной заменой и особыми мерами, способными поддерживать их в нормальном состоянии на протяжении как можно более долгого срока.

Разумеется, что именно второй вариант оказывается наиболее целесообразным уже потому, что он предполагает:

  • Минимум хлопот,
  • Небольшой объем денежных вложений,
  • Приобщение минимального количества специалистов.

И этим вариантом становится электрохимическая защита от коррозии трубопроводов.

Что обеспечивает электрохимическая защита от коррозии?

Данная защита позволяет защищать подобные изделия весьма эффективным образом. В ситуации, когда нет возможности применения оберточного материала или лакокрасочного покрытия для защиты, именно этот метод позволяет получить необходимый результат с минимальными потерями.

Такими методами обрабатывают подземные и надземные трубопроводы, а кроме того, он подходит и для днищ судов, а также и для множества других проблематичных в данном отношении ситуаций. При этом электрохимическая защита оказывается в полной мере эффективной во всех подобных ситуациях, она не подводит и полностью себя оправдывает, предотвращая коррозионные разрушения.

Для реализации подобной возможности к изделию подключается электрический ток из внешней среды, которым обеспечивается поляризация катодного типа, превращая анодные участки в катодные. В целом подобная защита может быть катодной или анодной.

Катодный вариант актуален при защите не склонного к пассивации металла, однако здесь может возникнуть опасность перезащиты, которая делает металл хрупким. Среди ее разновидностей можно отметить протекторную защиту, где могут применяться протекторы из разных видов металлов.

А что до анодной защиты – именно электрохимическая защита от коррозии трубопроводов оказывается наиболее актуальной, потому как она позволяет работать именно с теми металлами, из которых изготавливаются трубы. Такой вариант защиты в любом случае требует внимательного индивидуального подхода, и для обеспечения эффективности необходимо относиться с должным вниманием к целому ряду аспектов.

Так, к примеру, крайне важным аспектом в таких ситуациях становится качество сварных швов, которое должно быть идеальным, кроме того, важно, чтобы щелей и воздушных карманов также было немного.

Материал, с которым надлежит работать, должен оказываться в рабочей среде в своем пассивном состоянии, а еще подобные технологии неприменимы там, где имеются заклепочные соединения.

Важно отметить, что электрод и катод должны быть помещенными в раствор. Только соблюдение этих аспектов позволит в полной мере грамотно реализовать защиту упомянутого типа.

Таким образом, подобные технологии защиты оказываются довольно сложными и специфическими, и их максимально глубокое изучение оказывается порой актуальным даже для опытных специалистов, потому как прогресс актуален и для данного направления, и новые решения определенно оказываются достойными всяческого внимания и изучения.

Для того чтобы добиться успехов на таком поприще, необходимо изучать актуальные решения и максимально погружаться в профессиональную среду, в рамках которой обычно и циркулируют подобные решения и технологии. Ведь для открытой общественности они оказываются обычно просто неинтересными.

Защита подземных трубопроводов от коррозии

Коррозия – это процесс разрушения металла под электрохимическим воздействием окружающей среды.

Существует два основных типа коррозии: окисление и проявление электрических разрядов. Наряду с этим выделяют атмосферную, газовую, жидкостную и контактную среду.

Чтобы четко определить существующую степень опасности от такого процесса, основываются на физических показателях металлов и проверяют его свойства.

Разновидности коррозии и повреждений подземных трубопроводов

Распространение подобных разрушений зависит от внешних и внутренних факторов окружающей среды.

Первые оказывают влияние на металл посредством скорости от коррозии.

Самые распространенные факторы:

  • температурные показатели;
  • изменение давления;
  • ток;
  • взаимодействие металлов.

Внутренние напрямую влияют на фактуру, форму и состав материала.

Один из факторов мощной активности коррозии – понятие удельного сопротивления грунта. Главной его функцией является оценка реальной величины потенциала трубопровода и определение скорости почвенного корродирования.

Это отличная защита подземных трубопроводов от коррозии, так как точно определяет прогрессивность разрушительных процессов.

Электрохимическая и изоляционная защита подземных трубопроводов от коррозии

При создании труб на них принято накладывать специальные средства для изоляции в виде полимерного покрытия.

Это делается для того чтобы создать изделию защитный слой. Таким материалам нужно:

  • иметь хорошую сопротивляемость изоляции;
  • прочность;
  • стойкость к биохимическому воздействию;
  • быстро прилипать к металлам.

Все необходимое сырье и элементы таких покрытий должны быть с долгим сроком службы и обладать надежностью. Также данные приспособления должны соответствовать неким стандартам.

Требования к подобным защитным покрытиям достаточно высокие, они обязаны по максимуму оставаться технологичными, доступными и иметь оптимальные цены.

Изоляционная защита подземных трубопроводов от коррозии

Изоляционные покрытия не могут быть с какими-либо отверстиями или повреждениями в своем строении. Также им присуща хорошая прикрепляемость к поверхности и высокий уровень электрического сопротивления.

Покрытие обязано быть очень эластичным и не терять этого свойства при возможных транспортировках. Также они могут иметь стойкость к процессу стирания.

При длительной эксплуатации защитные элементы не должны контактировать с металлами трубы химическим путем. В трубные системы не может проникать влага и кислород.

Электрохимическая защита трубопроводов от коррозии

Что касается электрохимической защиты, то она несет функцию поляризации внешним током. Если она находится на минимальном уровне, и скорость коррозии составляет 0,01 мм/год, то это обеспечит нормальный эксплуатационный срок для оборудования.

Негативными показателями считается уровень коррозии, что достиг 30 % относительно стенок труб.

Наличие различных погрешностей в защитных покрытиях, которые могли возникнуть при производстве или в процессе использования, служит возбудителем к появлению серьезных коррозийных разрушений в будущем. Поэтому защита подземных трубопроводов от коррозии – залог для длительной и надежной службы трубопровода.

Больше о защите от коррозии подземных трубопроводов для нефтепродуктов можно узнать на выставке «Нефтегаз».

Примеры электрохимической защиты от коррозии трубопроводов на выставке

С одной стороны, поиск профессиональных контактов и налаживание коммуникаций в профессиональной среде может оказаться и непростой задачей, но с другой – сегодня существуют все возможности для максимального упрощения таких процессов.

Так, в частности, хорошим решением таких проблем становится обращение к профильным мероприятиям, таким как выставки, которые проходят в ЦВК «Экспоцентр» и привлекают огромное количество профессионалов, заинтересованных в самом активном общении и обмене информацией. Такой довольно популярной выставкой является «Нефтегаз».

На подобных выставках удается наиболее простым образом и без лишней потери времени выйти на необходимую информацию и получить при этом значительное количество партнеров и клиентов, обзавестись новыми полезными связями.

Именно такие мероприятия позволяют изучить новые технологии и оборудование и в целом получить все возможности для прогресса в рамках своей сферы бизнеса.

Радует, что попасть на такое мероприятие может каждый желающий, для этого достаточно купить билет, который можно заказать через интернет. Тем более что стоимость таковых оказывается вовсе не высокой, а пользы от них удается получить максимум при условии одного только визита.

Хотите увидеть современные примеры электрохимической защиты от коррозии трубопроводов для нефтепродуктов, приходите на выставку «Нефтегаз».

Оцените статью