Как создать ультразвук в домашних условиях?

Прочее
Несколько дней назад поступил очередной заказ. Покупатель хотел заказать мощную ультразвуковую пушку для борьбы с пьяной молодежью, для которых день начинается ночью, когда все нормальные люди спят. Недолго думая выбрал проверенную схему мощного ультразвукового излучателя. Сама пушка построена всего на одной микросхеме стандартной логике.
Содержание

Как создать ультразвук в домашних условиях?

Как создать ультразвук в домашних условиях?

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Мощная ультразвуковая пушка своими руками

    Несколько дней назад поступил очередной заказ. Покупатель хотел заказать мощную ультразвуковую пушку для борьбы с пьяной молодежью, для которых день начинается ночью, когда все нормальные люди спят. Недолго думая выбрал проверенную схему мощного ультразвукового излучателя. Сама пушка построена всего на одной микросхеме стандартной логике.

    Подойдут буквально любые аналогичные микросхемы, содержащие 6 логических инверторов. В нашем случае применена микросхема CD4049 (HEF4049), которая успешно может быть заменена на отечественную — К561ЛН2, только нужно обратить внимание на цоколевку, поскольку К561ЛН2 отличается от использованной некоторыми выводами.


    Поскольку схема достаточно простая, то может быть реализована на макетной плате или навесным образом. Усилитель собран на комплементарных парах КТ816/817, за счет применения этих ключей, мощность нашей пушки составляет 10-12 Ватт.

    В качестве излучателя желательно использовать высокочастотные головки типа 10 ГДВ или импорт, не советуется использовать пьезоизлучатель.

    Корпус — от китайского электронного трансформатора 10-50 ватт, пришлось переделывать, поскольку плата не вместилась.

    За частоту отвечает конденсатор 1,5нФ (который потом заменил на 3,9 нФ, поскольку с указанным в схеме конденсатором нижняя грань частот ровна 20кГц, а с такой заменой частоту можно настроить в пределах 10-30кГц) и переменный резистор (в итоге, настройку делают вращением этого резистора).

    Базовые резисторы можно заменить на 2.2кОм, которые являются более распространенными, чем те, которые указаны в схеме. Питается такой излучатель от стабилизированного блока питания на 5 Вольт с током 1 А (диапазон питающих напряжений 3,7-9 Вольт).

    На транзисторах может наблюдаться тепловыделение, но оно не критично, поэтому нет нужды в дополнительных теплоотводах.

    СХЕМА УЛЬТРАЗВУКОВОГО ГЕНЕРАТОРА

    Источник ультразвука необходим для очень широкого спектра девайсов — отпугивателей мышей, комаров, собак. Или просто в качестве ультразвуковой стиральной машинки. Так-же с данным EPU можно ставить интересные опыты и эксперименты (товарищи добавляют: в том числе и с соседями:)). Может использоваться для сокращения времени травления и промывки печатных плат, уменьшения времени замачивания белья. Ускорение протекания химических процессов в жидкости, облучённой ультразвуком, происходит благодаря явлению кавитации — возникновению в жидкости множества пульсирующих пузырьков, заполненных паром, газом или их смесью и звукокапиллярному эффекту. Ниже представлена схема ультразвукового генератора переменной частоты, взятая из журнала «Радиоконструктор».

    Основу схемы ультразвукового генератора составляют два генератора импульсов прямоугольной формы и мостовой усилитель мощности. На логических элементах DD1.3, DD1.4 выполнен перестраиваемый генератор импульсов формы меандр ультразвуковой частоты. Его рабочая частота зависит от ёмкости конденсатора С3 и общего сопротивления резисторов R6, R4. Чем сопротивление этих резисторов больше, тем частота меньше. На элементах DD1.1, DD1.2 сделан НЧ генератор с рабочей частотой около 1 Гц. Оба генератора связаны между собой через резисторы R3, R4. Конденсатор С2 предназначен для того, чтобы частота высокочастотного генератора изменялась плавно. Если конденсатор С2 зашунтировать переключателем SA1, то частота высокочастотного генератора будет постоянной. На микросхеме DD2 и полевых транзисторах выполнен мостовой усилитель мощности импульсов. Инверторы микросхемы раскачивают двухтактные повторители на полевых транзисторах. Когда на выводах 3, 6 DD2 лог. О, то на выходах DD2.3, DD2.4 будет лог. 1. Соответственно, в этот момент времени будут открыты транзисторы VT1, VT4, a VT2, VT4 будут закрыты. Использование сигнала прямоугольной формы приводит к богатому гармониками акустическому излучению. В качестве излучателей ультразвука используются две высокочастотные динамические головки типа 2ГД-36-2500. Можно использовать и 6ГД-13 (6ГДВ-4-8), ЭГД-31 (5ГДВ-1-8) и другие аналогичные. При возможности, их желательно заменить мощным пьезокерамическим излучателем или магнитостриктором, который можно попробовать изготовить самостоятельно, намотав на ферритовом П-образном сердечнике от ТВС телевизора несколько десятков витков многожильного медного провода, а в качестве мембраны применить небольшую стальную пластину. Катушка должна быть размещена на массивной опоре. Р-канальные полевые транзисторы можно заменить на IRF5305, IRF9Z34S, IRF5210; п-канальные — IRF511, IRF541, IRF520, IRFZ44N, IRFZ48N. Транзисторы устанавливаются на радиаторы. Микросхемы можно заменить на 564ЛА7, CD4011A, К561ЛЕ5, КР1561ЛЕ5, CD4001B. Дроссель L1 — любой миниатюрный индуктивностью 220. 1000 мкГн. Резисторы R7, R8 — самодельные проволочные. Переменный резистор СП3-30, СП3-3-33-32 или с выключателем питания СП2-33-20. Печатную плату генератора качаем в архиве.

    Настройка. Движок переменного резистора R5 устанавливается в среднее положение, контакты выключателя SA1 замыкаются, подбором ёмкости конденсатора С3 и сопротивления резистора R6 устанавливается частота генератора на DD1.3, DD1.4 около 30 кГц. Далее, контакты SA1 размыкаются и подбором сопротивлений резисторов R2, R3 и R4 следует установить девиацию ультразвуковой частоты от 24 кГц до 35. 45 кГц. Делать её более широкой не следует, так как или работа устройства станет слышимой человеком, либо заметно возрастут потери на переключение полевых транзисторов, а эффективность излучателей звука упадёт. Срыв работы генератора на DD1.3, DD1.4 не допускается, так как это может привести к повреждению катушек динамических головок. Источник питания должен быть рассчитан на ток не менее 2 А. Напряжение питания может быть от 11 до 13 вольт.

    Сегодня собрал такую схему ультразвукового излучателя — работает не очень, но! Немного пораскинув умом, пришел к выводу о необходимости повысить ёмкость С3 до 2200 пф, далее естественно была устранена ошибка в схеме — в элементе DD2.2 выводы 4 и 6 перепутаны. И о чудо — работает. Правда долго выдержать этот пронзительный звук, меняющийся в широком диапазоне не представляется возможным даже тем, кто находится и в других комнатах. Голова начинает даже не болеть, а её как будто в тиски жмёт, до тошноты противное состояние, выдержал секунд 30.

    Ток потребления можно рассчитать исходя из сопротивления применяемого ультразвукового излучателя, закон Ома помнят думаю все. К примеру, у меня стоит на 16 Ом, приняв за КПД 100% оконечного каскада, что почти так и есть, получаем 750 мА при напряжении питания 12 В. Напряжение менять не стоит, иначе упадет мощность, да и смысл уменьшать? Свой ультразвуковой излучатель питаю от кренки на 12 В. При перепадах напряжения частота более менее стабильна получается. Диапазон выходных частот варьирует в широком пределе переменным резистором от слышимого спектра — до не слышимого, необходимо лишь правильно подобрать скважность импульсов для правильной работы схемы. Устройство собрал и испытал: ГУБЕРНАТОР.

    Как сделать ультразвуковой генератор? Описание

    Неоднократно каждый из нас слышал выражение «ультразвук» — в данной статье мы рассмотрим что это, как создается, и для чего он нужен.

    Понятие «ультразвук»

    Ультразвук – это механические колебания, которые находятся значительно выше той области частот, которую слышит ухо человека. Колебания ультразвука чем-то напоминают волну, похожую на световую. Но, в отличие от волн светового типа, которые распространяются только в вакууме, ультразвуку нужна упругая среда – жидкость, газ или любое другое твердое тело.

    Основные параметры ультразвука

    Основными параметрами ультразвуковой волны принято считать длину волны и период. Время, которое требуется для полного цикла, принято называть периодом волны, измеряется оно в секундах.

    Мощнейшим генератором ультразвуковых волн считается УЗ-излучатель. Человеку не под силу слышать ультразвуковую частоту, но его организм способен ее чувствовать. Если говорить другими словами, то человеческое ухо воспринимает ультразвуковую частоту, но участок мозга, отвечающий за слух, не в силах сделать расшифровку этой звуковой волны. Для человеческого слуха неприятна высокая частота, но, если поднять частоту на еще один диапазон, то звук полностью исчезнет — несмотря на то, что в УЗ-частоте он есть. И мозг прилагает усилия, чтобы безуспешно его раскодировать, из-за этого у человека возникает жуткая головная боль, головокружение, тошнота и другие не совсем приятные ощущения.

    Генераторы ультразвуковых колебаний используются во всех областях техники и науки. Например, ультразвуку под силу не только постирать белье, но и сваривать металл. В современном мире УЗ активно применяется в сельскохозяйственной технике для отпугивания грызунов, поскольку организм большинства животных приспособлен к общению с себе подобными на ультразвуковой частоте. Также следует сказать, что генератор ультразвуковых волн способен отпугивать и насекомых — сегодня многие производители выпускают такого рода электронные репелленты.

    Разновидности ультразвуковых волн

    Ультразвуковые волны бывают не только поперечные или продольные, но и поверхностные и волны Лэмба.

    Поперечные УЗ волны – это волны, которые движутся перпендикулярно плоскости направления скоростей и смещений частиц тела.

    Продольные УЗ волны – это волны, движение которых совпадает с направлением скоростей и смещений частиц среды.

    Волна Лэмба – это упругая волна, которая распространяется в твердом слое со свободными границами. Именно в этой волне происходит колебательное смещение частиц как перпендикулярно плоскости пластины, так и в направлении движения самой волны. Именно волна Лэмба – это нормальная волна в платине со свободными границами.

    Рэлеевские (поверхностные) УЗ волны – это волны с эллиптическим движением частиц, которые распространяются на поверхности материала. Скорость поверхностной волны составляет почти 90% от скорости движения волны поперечного типа, а ее проникновение в материал равно самой длине волны.

    Использование ультразвука

    Как уже выше говорилось, разнообразное использование УЗ, при котором применяются самые различные его характеристики, условно можно разделить на три направления:

    1. получение информации;
    2. активное воздействие на вещество;
    3. обработка и передача сигналов.

    Следует учитывать, что при каждом конкретном применении необходимо выбирать УЗ определенного частотного диапазона.

    Воздействие ультразвука на вещество

    Если материал или вещество попадает под активное воздействие УЗ-волн, то это приводит к необратимым в нем изменениям. Это обусловлено нелинейными эффектами в звуковом поле. Такой тип воздействия на материал популярно в промышленной технологии.

    Получение информации при помощи УЗ-методов

    Ультразвуковые методы сегодня широко применяются в различного рода научных исследованиях для тщательного изучения строения и свойств веществ, а также для полного понимания проходящих в них процессов на микро- и макроуровнях.

    Все эти методы главным образом основаны на зависимости скорости распространения и затухания акустических волн от происходящих в них процессах и от свойств веществ.

    Обработка и передача сигналов

    Ультразвуковые генераторы используются для преобразования и аналоговой обработки различного рода электрических сигналов во всех отраслях радиоэлектроники и для контроля световых сигналов в оптике и оптоэлектронике.

    Ультразвуковой излучатель своими руками

    В современном мире ультразвуковой генератор используется достаточно широко. Например, в промышленности ультразвуковые ванны используются для быстрой и качественной очистки чего-либо. Следует сказать, что такой метод очистки зарекомендовал себя только с лучшей стороны. Сегодня ультразвуковой генератор набирает популярность в использовании и в других целях.

    Сборка схемы УЗГ для отпугивания собак

    Многие жители мегаполисов страны ежедневно сталкиваются с довольно-таки ощутимой проблемой встречи стаи бродячих собак. Заранее предугадать поведение стаи невозможно, поэтому здесь придет в помощь УЗГ.

    В данной статье мы с вами разберем как сделать ультразвуковой генератор своими руками.

    Для создания УЗГ в домашних условиях потребуются такие детали:

    • печатная плата;
    • миркосхема;
    • радиотехнические элементы.

    Самостоятельно собрать схему не составит большого труда. Для того чтобы была возможность управлять импульсами, следует закрепить при помощи паяльника к конкретным ножкам микросхемы радиодетали.

    Разберем конструкцию генератора ультразвуковой частоты высокой мощности. В качестве генератора УЗ-частоты работает микросхема D4049, которая имеет 6 логическиХ интерторов.

    Зарубежную микросхему можно заменить на аналог отечественного производства К561ЛН2. Для подстройки частоты требуется регулятор 22к, при помощи его УЗ можно снижать до слышимой частоты. На выходной каскад, благодаря 4-м биополярным транзисторам со средней мощностью, поступают сигналы с микросхемы. Особого условия по выбору транзисторов нет, здесь главное выбрать максимально близкие по параметрам комплементарные пары.

    Практически любая ВЧ-головка, которая имеет мощность от 5 ватт, может быть использована в качестве излучателя. Идеальным вариантом станут отечественные головки типа 10ГДВ-6, 10ГДВ-4 или 5ГДВ-6, их с легкостью можно найти во всех акустических системах производства СССР.

    Сделанную своими руками схему генератора УЗ осталось только спрятать в корпус. Контролировать мощность ультразвукового генератора поможет металлический рефлектор.

    Схема ультразвукового генератора

    В современном мире для отпугивания собак, насекомых, грызунов, а также для высококачественной стирки принято использовать генератор ультразвуковой. УЗГ также используется для того, чтобы значительно сократить временные затраты при промывке и травлении печатных плат. Химические процессы в жидкости протекают значительно быстрее благодаря кавитации.

    В основе схемы УЗГ состоят два импульсных генератора прямоугольной формы и усилитель мощности мостового вида. На логических элементах типа DD1.3 и DD1.4 устанавливается перестраиваемый генератор импульсов УЗ частоты формы меандр. Следует помнить, что его рабочая частота напрямую зависит только от общей сопротивляемости резисторов R4 и R6, а также от емкости конденсатора С3.

    Запомните правило: чем меньше частота, тем больше сопротивление этих резисторов.

    На элементах DD1.1 и DD1.2 сделан генератор НЧ, который имеет рабочую частоту 1 Гц. Между собой генераторы связаны при помощи резисторов R3 и R4. Для того чтобы достичь плавного изменения частоты высокочастотного генератора нужно использовать конденсатор С2. Здесь также следует запомнить один секрет – если конденсатор С2 зашунтировать с помощью переключателя SA1, то частота генератора высоких частот станет постоянной.

    Использование ультразвука: широчайшая сфера применения

    Как все мы знаем, ультразвук в современном мире где только не используется. Наверняка каждый из нас хоть раз в жизни проходил процедуру УЗИ (ультразвукового исследования). Следует добавить, то именно благодаря УЗИ доктора могут обнаружить возникновение заболеваний органов человека.

    Ультразвук активно применяется в косметологии для эффективного очищения кожного покрова не только от грязи и жира, но и от эпителия. К примеру, ультразвуковой фонофорез успешно используется в салонах красоты как для питания и очищения, так и для увлажнения и омоложения кожного покрова. Методика применения УЗ-фонофореза усиляет за счет действия ультразвуковой волны защитные механизмы кожи. Косметические процедуры с применением ультразвука считаются универсальными и подходят для всех типов кожи. Ультразвуковой фонофорез вторит чудеса!

    Ультразвуковой генератор пара активно используется не только в турецких хаммамах, финских саунах, но и в наших современных русских банях. Благодаря пару наше тело эффективно очищается от невидимой грязи, наш организм избавляется от токсинов и шлаков, оздоравливаются кожа и волосы, пар положительно влияет на органы дыхания человека.

    Генераторы искусственного тумана активно используются для повышения влажности воздуха в помещениях, что благотворно влияет на климат в квартире. Особенно актуальным это стает в холодное время года, когда централизованное отопление пересушивает воздух. Используют генераторы искусственного тумана как в жилых помещениях, так и террариуме или зимнем саду. Специалисты советуют иметь ультразвуковой генератор тумана людям с заболеваниями дыхательных путей или склонными к аллергическим заболеваниям.

    Вывод

    В домашнем использовании ультразвуковой генератор пара или тумана – это очень полезный прибор, который не только создаст комфорт и уют, но и сможет обогатить воздух невидимыми глазу витаминами, легкими отрицательными аэроионами, которых так много на морском берегу, в горах или в лесу и крайне мало внутри наших квартир. А это, в свою очередь, будет способствовать повышению эмоционального состояния и улучшению здоровья.

    Как создать ультразвук в домашних условиях?

    Некоторые птицы, а также собаки, мыши, крысы, летучие мыши и другие животные могyт слышать звуки с частотами до 40000 Гц. Схема, предложенная здесь, издает непрерывный ультразвук частотой выше воспринимаемой человеком в диапазоне между 18000 и 40000 Гц. Устройство может быть использовано для лечения собак и других животных, в биологических экспериментах и для многих других целей.

    Рекомендуемый пьезодинамик отдает максимальную выходную мощность в диапазоне частот между 700 и 3000 Гц; он также будет работать на более высоких частотах, но с меньшей мощностью.

    Рекомендуемые источники питания — четыре пальчиковых батарейки или одна (батарейка или аккумулятор) на 9 В. Потребляемый ток очень мал.

    Схема (рис. 1) генерирует сигнал частотой от 18000 до 40000 Гц, но вы можете легко поменять этот диапазон подбором емкости конденсатора С1 или резистора R1. Диапазон номиналов емкости С1 — от 470 пФ до 0,001 мкФ, сопротивление резистора R1 можно увеличивать до 100 кОм. Верхняя граница генерируемых ИС 4093 частот — 500 кГц.

    Перечень элементов приведен в таблице.

    Схема может быть помещена в небольшой пластмассовый корпус. динамик закрепляется па передней панели.

    Ультразвуковой генератор 1. Эта схема работает в диапазоне частот от 18 до 40 кГц
    Обозначение Описание
    IC1 Интегральная схема КМОП 4093
    Х1 Пьезодинамик или пьезонаушник
    R1 Потенциометр или подстроечный резистор, 22 кОм
    R2 Резистор, 22 кОм, 0,25 Вт, 5%
    С1 Пленочный или керамический конденсатор, 1200 пФ
    С2 Электролитический конденсатор, 100 мкФ, 12 В
    S1 Однополюсный выключатель
    B1 Четыре пальчиковых батарейки (6 В) или аккумулятор (9 В)

    Ультразвуковой генератор второй вариант

    С помощью двух ИС 4093 можно изготовить мощный ультразвуковой генератор, как показано на рисунке. В качестве нагрузки в схеме используется пьезодинамик или пьезонаушник на десятки милливатт. Генератор работает в частотном диапазоне между 18000 и 40000 Гц.

    Ультразвуковой генератор 2

    Частота может варьироваться путем изменения емкости С2. Верхний предел частоты схемы — 1 МГц.

    Генератор пригоден для проведения биологических экспериментов, связанных с изучением поведения животных и условий их содержания. Питание — четыре пальчиковых батарейки или батарейка/аккумулятор на 9 В. Схема потребляет всего несколько миллиампер, при этом срок службы батареек — до нескольких недель.

    Последовательно с R1 можно включить переменный резистор номиналом 47 кОм, что позволит регулировать частоту в широком диапазоне.

    Перечень элементов дан в таблице. В качестве громкоговорителя можно использовать высокочастотный пьезодинамик — твитер. Внутри этого компонента имеется небольшой выходной трансформатор, как показано на рисунке. Вам нужно удалить его.

    Перечень элементов ультразвукового генератора 2

    Обозначение Описание
    IC1, IC2 Интегральная схема КМОП 4093
    X1 Пьезодинамик или пьезонаушник
    R1 Резистор, 27 кОм, 0,25 Вт, 5%
    С1 Электролитический конденсатор, 100 мкФ, 12 В
    С2 Керамический или пленочный конденсатор, 0,001 мкФ
    S1 Тумблер или кнопка
    B1 Четыре пальчиковых батарейки (6 В) или аккумулятор (9 В)

    Трансформатор нужно удалить

    Ультразвуковой генератор третий вариант

    Это третья версия ультразвукового генератора. Используется пьезоэлектрический твитер. Выходной каскад на транзисторах обеспечивает мощный выходной сигнал. Динамик, являющийся нагрузкой выходного каскада, может выдавать ультразвуковой сигнал мощностью до 400 мВт.

    Схема питается от четырех пальчиковых батареек или от аккумулятора/батарейки напряжением 9 В, потребляемый ток — около 50 мА.

    Частота может задаваться резистором R1 в диапазоне между 18000 и 40000 Гц. Можно изменять частоту подбором емкости конденсатора С1. Значения между 470 и 4700 пФ могут быть подобраны экспериментально.

    Хотя твитер имеет наибольшую эффективность в диапазоне между 10000 и 20000 Гц, этот преобразователь, как экспериментально подтверждено, может нормально работать и на частотах до 40000 Гц.

    В данной схеме нет необходимости отсоединять внутренний трансформатор твитера, как мы делали в предыдущем проекте. Вы можете также использовать специальный ультразвуковой преобразователь с сопротивлением от 4 до 100 Ом.

    Принципиальная схема ультразвукового генератора показана на рисунке. Перечень элементов приведен в таблице. Устройство может быть собрано в небольшом пластмассовом корпусе.

    Ультразвуковой генератор 3
    Обозначение Описание
    IC1 Интегральная схема КМОП 4093
    Q1 Кремниевый n-p-n транзистор, 2N2222
    Q2 Кремниевый p-n-p транзистор, 2N2907
    X1 Пьезоэлектрический твитер, 4-8 Ом
    S1 Однополюсный выключатель
    B1 Четыре пальчиковых батарейки (6 В) или аккумулятор (9 В)
    R1 Потенциометр, 47 кОм
    R2 Резистор, 10 кОм, 0,25 Вт, 5%
    R3 Резистор, 2,2 кОм, 0,25 Вт, 5%
    С1 Керамический конденсатор, 1200 пФ
    С2, С3 Электролитический конденсатор, 100 мкФ, 12 В

    Для регулировки частоты используйте частотомер, подключая его к выводу 4 ИС.

    Мощный ультразвуковой генератор

    Эта схема может выдавать ультразвуковой сигнал мощностью в несколько ватт с применением пьезоэлектрического твитера или преобразователя другого типа. Рабочая частота — от 18000 до 40000 Гц, она может изменяться подбором емкости конденсатора С1. При больших значениях емкости будет формироваться сигнал в звуковом диапазоне, что позволяет использовать схему в аварийной сигнализации и других устройствах. В этом случае твитер может быть заменен обычным громкоговорителем.

    Схема потребляет несколько сот миллиампер от источника питания 9 или 12 В. Батарейки рекомендуются только для кратковременных режимов работы.

    Можно использовать это устройство для отпугивания собак и других животных, установив его около мест для сбора мусора и др.

    Ультразвуковой режим работы достигается при величине емкости С1 от 470 до 2200 пФ. Для сигнала звукового диапазона требуется емкость в диапазоне 0,01-0,012 мкФ.

    Принципиальная схема мощного ультразвукового генератора показана на рисунке, перечень элементов приведен в таблице.

    Мощный ультразвуковой генератор. Все транзисторы должны быть смонтированы на радиаторах
    Обозначение Описание
    IC1 Интегральная схема КМОП 4093
    Q1, Q3 Кремниевый n-p-n транзистор, TIP31
    Q2, Q4 Кремниевый p-n-p транзистор, TIP32
    SPKR Твитер или громкоговоритель, 4-8 Ом
    R1 Потенциометр, 100 кОм
    R2 Резистор, 10 кОм, 0,25 Вт, 5%
    R3, R4 Резистор, 2,2 кОм, 0,25 Вт, 5%
    С1 Пленочный или керамический конденсатор, 1200 пФ или 0,022 мкФ
    С2 Электролитический конденсатор, 100 мкФ, 12 В

    Транзисторы должны быть смонтированы на радиаторах. Все компоненты можно поместить в пластмассовый корпус

    Регулируемый генератор на Ардуино для ультразвуковой ванны с излучателем Лажевна. Часть 1

    В интернете полно статей со схемами пуш-пулл, и даже тут, на Хабре, но люди не любят брать в руки паяльник, а уж тем более осцилограф.

    Я же опишу схему, собранную на стандартных для ардуинщика модулях.

    Из приборов необходим только тестер (да хоть DT-830), паяльник тоже нужен, но буквально на 6 точек — подключить сам излучатель и трансформатор.

    Внимание! Статья содержит сцены насилия над электроникой и ненормативную лексику нестандартное использование компонентов,
    поэтому если Вы радетель за чистоту науки — делайте классическую полумостовую схему, остальные — welcome под кат!

    Итак, В чем сила, брат? сразу открою все карты — сердцем конструкции служит мостовой драйвер двигателей на L298N:

    Да, я не открыл Америки, ибо на нем собран ультразвуковой левитатор, да и код Ардуино взят оттуда же.

    Просто в данной конструкции выходы запараллелены и микросхема работает практически на пределе, у меня потребление при 20В составило 3 ампера, при четырех максимальных.

    Суть же как раз в том, что схема может питать излучатель Лажевена мощностью 50-60Вт с частотой до 40кГц, и это просто!

    Минус тоже есть — если что-то пойдет не так (пропадание контакта одной из сигнальных линий А0-А3), микросхема сгорит, может даже с фейерверком 😉

    Поэтому данные проводники лучше запаять, или по крайней мере использовать новые разъемные «дюпонты».

    Итак, для сборки конструкции нам понадобятся следующие основные компоненты:

    Начиная от уже знакомого нам коммутатора по часовой стрелке:

    1. Ультразвуковой излучатель 50-60W 28/40кГц
    2. Импульсный трансформатор от старого компьютерного блока питания
    3. Step-UP преобразователь мощностью от 100/150 Ватт
    4. Ардуино — по вкусу — любой на Atmega328P — Uno, Pro mini, Nano и т.д., я взял последнее просто потому, что оно было под рукой 😉

    По поводу трансформаторов — в качестве донора подойдет любой старый БП от компьютера:

    Как видите, со своим я не церемонился — просто поломал печатную плату, чтобы было удобней обкусывать выводы бокорезами (ибо выпаивать без термофена неудобно).

    Да, на плате обычно присутствует несколько трансформаторов, следует выбрать самый крупный.

    Встречаются и трансформаторы-девочки, потому как с косичкой 😉

    В любом случае, ультразвуковой излучатель подключают к крайним выводам по стороне где 2(3) контакта, остальные следует искать, но об этом позже.

    Да, еще нам потребуется вентилятор для охлаждения радиатора драйвера двигателей (из того же блока питания), и опционально вольт-амперметр:

    На самом деле достаточно амперметра, включенного между преобразователем step-up и платой L298N.

    Зачем? Да просто чтобы оценивать потребляемый схемой ток (чтобы не сгорела), а заодно настраивать частоту резонанса.

    Последняя может «гулять» +-500Гц в зависимости от условий работы излучателя.

    Схема подключений у нас следующая:

    Обращаю внимание, что на плате драйвера двигателей следует снять перемычку над контактами питания (5VEN), иначе микросхема сгорит.

    Выводы на двигатели ультразвуковую головку (справа и слева соединяются перекрестно) — один выход не вытягивает по мощности.

    Соответственно, задействуются все четыре управляющих входа коммутатора, откуда и вытекает возможность короткого замыкания, о которой писал вначале.

    Вообще-то эту операцию следует выполнять после холостого прогона с прошитым контроллером, убедившись тестером(на пределе

    200V) что между соединяемыми точками нулевой потенциал.

    До сборки схемы на преобразователе step-up выставляется минимальное напряжение (при питающем 12В, на выходе для начала делаем не более 14В)

    Излучатель и вентилятор пока не подключаем, сначала нужно найти «правильные» обмотки трансформатора.

    Для этого в Ардуино загружаем нижеследующий скетч:

    Я в нем добавил одну лишь строку «OCR1A = 285;» для излучателя в 28кГц, подбор частоты — не более +-15 к указанной величине.

    Все, можно включать схему(без головки) и приступить к поиску правильной обмотки:

    Косичка — общий, остальные (по стороне где много выводов) — перебором — следим, чтобы радиатор коммутатора не грелся(иначе обмотка — не та) и напряжение на выходе(там, где 2/3 вывода — между крайними) было минимальным (у меня

    Теперь, обесточив схему, подключаем ультразвуковой излучатель, амперметр между преобразователем напряжения и коммутатором, вентилятор.

    Излучатель для настройки ставим в ванночку с водой так, чтобы черные «шайбы» были сухими.

    Включив питание, подбором коэфициента OCR1A добиваемся максимального тока потребления — это и будет резонанс ультразвуковой головки.

    Мощность регулируется изменением напряжения преобразователя step-up (коммутатор поддерживает до 48 Вольт).

    Все, схема настроена, можно строить ультразвуковую ванну.

    Ее описание приводить не буду, ибо боян, скажу лишь, что система и фольгу растворяет, и болты чистит:

    Да, разница лишь в том, что я к дну емкости излучатель не клеил, а прикрутил болтом с гайкой — резьба в головке нестандартная М10х1.

    Болт подошел от крепления шаровой автомобиля «Таврия», кстати с ним частота резонанса поднялась с 27500Гц до положенных 28000.

    И еще, на самой головке во время резонанса напряжение составляет киловольты, поэтому следует соблюдать правила техники безопасности.

    Клей не использовал по одной простой причине — во второй части расскажу о более интересных профессиях ультразвука, чем «стирать белье».

    UPD!

    По просьбам читателей, привожу фотографии своей «ультразвуковой ванны», собранной буквально из говна и палок канализационной заглушки и болта от Таврии 😉

    Заглушка для труб диаметром 110мм, это раз:

    Крепление сделано тем самым болтом с шайбой, диаметром не менее, чем диаметр верхней части излучателя(50мм против 45), это два:

    И наконец, конструкция в сборе, это три:

    Да, это не столь эстетично, как скажем у HamsterTime,

    зато поставив сверху отрезок пластиковой сливной трубы с уплотнителем, я смогу почистить ствол своего дробовика совершенно без усилий,
    да и на излучатель у меня еще планы — собрать ультразвуковой резак, в стиле вот такого:

    Ну а ультразвуковая медогонка(ради которой и городил всю затею) пока не получилась.

    Оцените статью