Коэффициент наплавки при полуавтоматической сварке

Информация о коэффициенте наплавки, от каких показателей сварочной проволоки и электродов он зависит, видео расчета для ручной и полуавтоматической сварки.
Содержание

Коэффициент наплавки при полуавтоматической сварке

Коэффициент наплавки – показатель производительности сварочного процесса

Коэффициент наплавки (КН) стержней для сварки – по-настоящему важная величина. Ее в обязательном порядке учитывают при составлении техпроцесса на выполнение конкретного вида сварных мероприятий.

1 КН и производительность сварки – прямая связь

Стержни для ручной сварки делают по опробованной методике из особой проволоки. На ней обязательно имеется специальное покрытие. На последнее возлагается несколько важных задач:

  • формирование определенных условий в сварочной ванне;
  • предохранение стержней от вредного влияния на них окружающей атмосферы;
  • увеличение числа ионов, нужных для осуществления операции.

Объем металлического расплава, идущего на создание шва за заданный временной отрезок, описывает коэффициент наплавки. Он, по сути, демонстрирует нам производительность любого сварочного мероприятия.

Зная КН, специалист без проблем рассчитает число электродов (вариант – проволоки, если идет полуавтоматический процесс), которые понадобятся ему для работ (без перерывов) на протяжении некоторого (заранее оговоренного) периода времени.

На коэффициент наплавки влияет полярность и тип тока. Его показатель разнится и в зависимости от покрытия электродов и вида сварочной проволоки. Важно учесть и еще один нюанс. КН имеет неодинаковые значения при разных пространственных размещениях сварочного стержня.

Конкретное значение КН проволоки (при полуавтоматической схеме) и электродов со спецслоем (ручной процесс) рассчитывается по формуле Gh/I. Под I здесь понимают ток в амперах, а под Gh – вес металла в граммах, наплавляемого на сварное соединение за час.

2 КН и толщина покрытия электродов

Изделия для сварки из проволоки могут иметь разное покрытие. По показателю толщины оно бывает большим, средним, повышенным. Самыми эффективными считаются стержни с большой толщиной защитного слоя. Коэффициент наплавки таких изделий может составлять 12 г/А*ч.

Подобные стержни рекомендуется применять при нижнем положении сварки и при потребности получения достаточно длинного соединительного шва. Впрочем, их допускается использовать и в иных положениях. Все зависит от конкретных условий проведения работ.

Изделия с покрытием средней толщины годятся для любого положения. Показатель наплавки для таких электродов находится на уровне 8–9 г/А*ч. Коэффициент наплавки стержней с повышенной толщиной специального покрытия равняется уже 16–18 г/А*ч. Они очень производительные. Но при сварке использовать их допускается только в нижнем положении. Причем тогда, когда по технологическому процессу требуется получить длинный соединительный шов. Если протяженность последнего будет незначительной, эффективность эксплуатации электродов с «толстым» покрытием существенно снизится.

3 Коэффициент расплавления электродов – связь с КН

Рассматривая коэффициент наплавки, следует упомянуть и еще один параметр используемых при сварке стержней. Называется он коэффициентом расплавления (КР). Под ним понимают часть собственного веса сварочного стержня, переходящую за 1 час под влиянием электротока в расплавленный металл.

Понятно, что на создание шва идет далеко не вся масса металла. Некоторое его количество при воздействии на электрод сварочной дуги просто-напросто выгорает, часть испаряется и разбрызгивается. Конкретные объемы потерь металла зависят от вида сварочной проволоки, режима сварки, покрытия электродов и вида сварного соединения. При ручной и полуавтоматической сварке металла теряется меньше в случаях, когда длина дуги и плотность тока имеют малые величины.

Обычно коэффициент расплавления проволоки или электродов всегда имеет большее значение (примерно на 1–3 г/А*ч), нежели показатель наплавки. Правда, существуют такие электроды, у которых две этих величины абсолютно идентичны. Если же использовать стержни с покрытием из железного порошка, показатель расплавления будет даже меньше, чем КН.

Существуют специальные таблицы, в которых даются величины рассмотренных нами коэффициентов для разных вариантов сварки (полуавтоматической и ручной). Но профессионалы используют их редко. На практике коэффициент наплавки и КР (их номинальные величины) устанавливаются специалистом экспериментально при осуществлении тех или иных сварочных мероприятий. При этом сварщик принимает во внимание показатель потерь металла, который варьируется в пределах 3–30%.

Коэффициент наплавки электродов – в чем его значение

Содержание:

  • Что такое коэффициент расплавления электродов?
  • Что такое коэффициент наплавки электрода?
  • Зависимость положения при сварке от толщины покрытия электрода и от коэффициента наплавки.

Электроды, применяемые в ручной дуговой сварке – это стержни, длина которых может достигать 450 мм. Изготавливаются электроды из сварочной проволоки, а сверху на них наносится специальное покрытие, которое выполняет следующие задачи:

  • увеличивает образование ионов
  • защищает электрод от воздействия окружающей среды
  • создает специальные условия в сварочной ванне.

Одной из основных характеристик этого сварочного материала является коэффициент расплавления и коэффициент наплавки электродов.

Что такое коэффициент расплавления электродов?

Во время проведения сварочных работ методом ручной дуговой сварки электрод расплавляется – именно это и помогает в образовании сварного шва. У каждого типа электродов имеется свой коэффициент расплавления, который высчитывается в зависимости от того, какая масса расплавленного электрода приходится на один ампер силы тока за промежуток времени горения дуги, равный одному рабочему часу.

При проведении сварочных работ следует учитывать, что не вся масса расплавленного электрода переносится в сварной шов, так как в данном случае присутствуют, кроме того, такие явления, как разбрызгивание расплавленного металла, его испарение, а также угар, вызываемый горением сварочной дуги. При этом уровень потерь металла электрода при сварке зависит от нескольких факторов:

  • от состава проволоки, используемой для изготовления электрода
  • от типа покрытия, применяемого при изготовлении электрода
  • от режима сварки
  • от типа сварного соединения.

Надо учитывать, кроме того, что потери металла электрода будут тем больше, чем выше плотность тока и длина сварной дуги.

Что такое коэффициент наплавки электрода?

Коэффициент наплавки электродов зависит от того, какого рода ток используется при проведении сварки (постоянный или переменный), какова его полярность (прямая или обратная). Также большое значение при определении коэффициента наплавки имеет то, какая именно проволока использовалась при изготовлении электрода и каков тип его покрытия. Кроме того, коэффициент наплавки зависит и от того, в каком пространственном положении выполняются сварочные работы.

Для определения коэффициента наплавки применяется следующая формула:

– масса наплавленного металла за определенный промежуток времени (t), измеряется в граммах

I – сварочный ток, измеряется в амперах.

По своим значениям коэффициент наплавки, как правило, меньше, чем коэффициент расплавления из-за потерь металла в процессе сварки. Если коэффициент расплавления электродов, в зависимости от их типов, может составлять от 7 до 22 г/А-ч, то коэффициент наплавки при этом на 1-3 г/А-ч меньше. Но у некоторых типов электродов коэффициент наплавки может быть абсолютно равным коэффициенту расплавления, а если в составе покрытия электрода имеется порошок железа, то в этом случае коэффициент наплавки будет даже выше, чем коэффициент расплавления.

Вообще, номинальный коэффициент потерь во многом зависит от типа самого электрода и может колебаться от 3 до 30 процентов. А коэффициенты расплавления и наплавки для всех типов электродов определяется каждый раз экспериментальным образом.

Знание этих величин очень важно и для самого сварщика, который на их основе, определяет, сколько времени ему потребуется для образования качественного сварного соединения, и для сметчика, который с помощью этих коэффициентов определяет, сколько электродов потребуется при проведении сварочных работ.

Зависимость положения при сварке от толщины покрытия электрода и от коэффициента наплавки.

Толщина покрытия электрода может быть средней, большой и повышенной.

  • Если для сварки применяется электрод со средней толщиной покрытия, коэффициент наплавки которой составляет 8-9 г/А-ч, то сварку такими электродами можно производить абсолютно в любом пространственном положении.
  • Электроды с покрытием большой толщины отличаются высокой производительностью – коэффициент наплавки у них составляет до 12г/А-ч. Они также могут, по большому счету, применяться в любом пространственном положении, но наибольшую эффективность они покажут при сварке в нижнем положении, а шов при этом должен иметь достаточно большую протяженность.
  • Электроды с покрытием повышенной толщины относятся к классу высокопроизводительных – в них коэффициент наплавки достигает 18 г/ А-ч. Такой тип электродов может применяться исключительно при сварке в нижнем положении, а сварные швы при этом должны иметь большую протяженность – в этом случае использование электрода будет отличаться максимальной эффективностью.

Итак, знание коэффициента наплавки электрода довольно важно при проведении сварочных работ. Именно от коэффициента наплавки зависит и качество подготовки к проведению сварочных работ – а именно, подготовка нужного количества электродов, что обеспечивает непрерывность работ, и качество выполнения самого сварного соединения, так как на основе знания коэффициента наплавки сварщик может определить, в каком положении ему лучше всего производить работы и сколько времени для этого потребуется.

Коэффициент наплавки электродов

Автор: Игорь

Дата: 14.07.2017

  • Статья
  • Фото
  • Видео

Перед проведением сварочных работ необходимо рассчитать коэффициент наплавки электродов. Данным термином обозначается важная величина, характеризующая продуктивность процесса сварки. КН позволяет определить, какое количество электрода идет на формирование шва, без учета связанных с этим процессом потерь материала.

Сколько наплавки электрода необходимо для шва?

Электроды для сварки

Электроды (стержни, применяемые в процессе сварки) изготавливаются с применением специальной проволоки. На нее наносится особое покрытие. Оно должно:

  • формировать подходящие условия в сварочной ванне;
  • предохранять стержни от негативного влияния, которое производится на них воздействием окружающей среды;
  • увеличивать число ионов, необходимых для проведения сварки.

Наличие покрытия обязательно. Для зоны сварной ванны характерны очень высокие температуры. Вследствие контактов с кислородом металл может окислиться. Из-за этого будет наблюдаться повышенный расход сварного материала. Окисление также повлияет на качество будущего шва вследствие наличия в нем большого количества вкраплений неметаллического характера. Наличие покрытия позволяет избежать подобных результатов. Коэффициент наплавки электродов Э42, к примеру, составляет 10 г/А-ч, именно благодаря толщине покрытия.

Коэффициенты наплавки/расплавления – важные величины, характеризующие производительность стержней в конкретных условиях. КН позволяет рассчитать потери материала при проведении работ, КР дает возможность оценить эффективность работы стержней. Использование данных характеристик позволяет рассчитать производительность сварочных работ. Классификация электродов осуществляется с учетом данных параметров.

Коэффициент наплавки

Значение КН в большинстве случаев ниже коэффициента расплавления. Причина – потери металла в процессе проведения сварочных работ. Иногда КН ровняется КР, если покрытие электрода содержит в себе железный порошок. Наличие последнего может привести к превалированию коэффициента наплавки над КР. На КН влияет:

  • используемый ток;
  • поляризация электродов;
  • тип проволоки, использованной для производства стержня;
  • тип покрытия электрода;
  • пространственное положение, в котором происходит выполнение сварки.

Выделяют три типа покрытия сварочных стержней:

  • повышенное. КН таких стержней – от пятнадцати до шестнадцати г/А-ч. Используются исключительно для варки в нижнем положении, для получения длинных соединительных швов;
  • среднее. КН – от восьми до девяти г/А-ч. Коэффициент наплавки электродов Э46, к примеру, позволяет отнести их к данному виду изделий. Проводить сварку допустимо с любого положения;
  • большое. КН – до двенадцати г/А-ч. Рекомендовано использовать нижнее положение, однако допустимы и другие варианты.

Формула расчета коэффициента наплавки

Для определения КН необходимо массу металла, наплавленного на шов за определенный промежуток времени, поделить на ток, используемый для сварки (измеряется в амперах). Масса указывается в граммах. Значение коэффициента указывается в граммах на ампер-час. К примеру, коэффициент наплавки электродов УОНИ 13 55 – 9,5 г/А-ч.

Знание КН важно для предварительной подготовки необходимого для проведения процедуры количества электродов. Это позволяет обеспечить непрерывную сварку, увеличивая производительность труда. От КН зависит качество будущего шва. Зная этот параметр, сварщик имеет возможность применить оптимальное положение для проведения сварочной работы. Регулирует коэффициент наплавки электродов ГОСТ 9466-75.

Коэффициент расплавки

Приспособление для сварки в процессе ее проведения расплавляется. Благодаря этому возможно образование швов. Каждое изделие расплавляется в зависимости от ряда параметров. На этот процесс влияет:

  • состав проволоки, из которой изготовлено изделие;
  • тип покрытия, наносимого на нее;
  • режим сварки;
  • тип соединения.

Не весь материал изделия идет на образование шва. Значительная его часть не переносится в шов. Это связано с:

  • разбрызгиванием расплавленного металла;
  • испарением металла;
  • угаром, возникающим из-за горения сварочной дуги.

Данный показатель рассчитывается за следующей формулой – Мрм/(Ст*Вр).»

В данной формуле: Мрм – масса металла, расплавленного за определенный промежуток времени (в граммах); Ст – сварочный ток (в амперах); Вр – промежуток времени, в течение которого происходило горение дуги (в часах).

Существуют специальные таблицы, в которых указываются описанные выше параметры для каждого изделия. Подобная таблица будет приведена ниже. Однако специалисты редко прибегают к их использованию. В большинстве случаев КР и КН устанавливаются экспериментально, путем предварительной апробации изделий.

Конкретные показатели

Показатели КР и КН, как уже было указано ранее, различны для каждого изделия и зависят от многих параметров. Так, коэффициент наплавки электродов МР-3, отличается от такового у УОНИ 13/55. Производитель стержней, используемых для сварки, указывает данные параметры. Ознакомиться со значениями для отдельных изделий можно с помощью следующей таблицы:

Выбор параметров режима полуавтоматической сварки

К числу параметров влияющих на процесс сварки и формирование сварочного шва при полуавтоматической сварки относят:

  • род и полярность сварочного тока;
  • диаметр сварочной проволоки;
  • сила сварочного тока;
  • напряжение на дуге;
  • расход защитного газа;
  • скорость подачи сварочной проволоки;
  • скорость сварки;
  • вылет и выпуск электрода.

[context]

Род и полярность тока

Полуавтоматическая сварка ведется на постоянном токе обратной полярности. Прямую полярность не смотря на большую скорость расплавления металла не используют. Это связано с менее стабильным горением дуги и более интенсивным разбрызгиванием. В редких случаях используют переменные источники питания.

Рис. 1. Интенсивное разбрызгивание металла на прямой полярности

Диаметр сварочной проволоки

Для механизированной сварки производят проволоки диаметром от 0,5 до 3 мм. Необходимую толщину сварочной проволоки выбирают в зависимости от толщины сварных деталей и пространственного положения шва в пространстве. Сварка проволокой малого диаметра отличается более устойчивым горением дуги и большой глубиной проплавления металла. Разбрызгивания металла менее интенсивные. Повышается коэффициент наплавленного металла. С увеличением диаметра сварочной проволоки необходимо повышать силу сварочного тока и соответственно наоборот.

Сила сварочного тока

От силы сварочного тока при полуавтоматической сварке во многом зависит производительность процесса. Устанавливается ток в зависимости от используемого диаметра электродной проволоки и толщины конструкции. Чем больше значение силы тока, тем больше глубина проплавления шва.

Сила тока при механизированных методах сварки связана со скоростью подачи проволоки и регулируется изменением скорости подачи.

Напряжение на дуге

При выборе напряжения на дуге руководствуются установленной силой тока. Регулировать напряжение дуги можно изменяя напряжение холостого хода источника питания.

Рис. 2. Напряжение на дуге

При сварке на высоком напряжении дуги возможно ухудшение газовой защиты и как следствие образование пор. Увеличение напряжения приводит к увеличению разбрызгивания и росту ширины шва. Глубина шва уменьшается, поэтому для механизированной сварки необходимо выбирать не высокие показатели напряжения на дуге.

Расход защитного газа

Расход газа во многом зависит от диаметра сварочной проволоки и тока. При сварке на открытых монтажных площадках или сквозняках необходимо увеличить расход защитного газа. Для улучшения газовой защиты также снижают скорость сварки или приближают сопло горелки к поверхности металла.

Для удержания защитного газа вблизи зоны сварки можно использовать защитные экраны.

Рис. 3. Защитные экраны

Скорость подачи сварочной проволоки

Скорость подачи проволоки регулируется вместе с током. Если при сварке наблюдаются короткие замыкания необходимо понизить скорость подачи, а при возникающих обрывах дуги скорость подачи повышают. Правильно выбранная скорость подачи проволоки отличается стабильным процессом горения дуги.

Скорость сварки

При полуавтоматической сварке скорость перемещения горелки устанавливает сварщик. Необходимо выбирать такую скорость при которой получается качественное формирование сварного шва. Толстостенные конструкции принято сваривать на высокой скорости формируя узкие швы. На высокой скорости сварки необходимо следить чтобы конец проволоки и металла шва не окислялся через выход из зоны защиты газа. На низкой скорости сварки ширина шва повышается из-за разрастания сварной ванны. Повышается способность образования пор.

Вылет и выпуск электродной проволоки

Вылет — расстояние между концом проволоки и токоподводящим наконечником.

Выпуск — расстояние между концом проволоки и соплом горелки.

Рис. 4. Вылет и выпуск электрода

Слишком высокий вылет ухудшает формирование шва и устойчивость горения сварочной дуги, интенсивнее разбрызгивается металл. При малом вылете возможно подгорание сопла и токоподводящего наконечника горелки.

При большом выпуске конца проволоки возможен выход из газовой защиты. Маленький выпуск затрудняет визуальное наблюдение за процессом сварки. Более сложно выполнять угловые швы.

Таблица 1. Вылет и выпуск электрода в зависимости от диаметра сварочной проволоки

Диаметр проволоки, мм Вылет электрода, мм Выпуск электрода, мм Расход газа, л/мин
0,5-0,8 7-10 7-10 5-8
1-1,4 8-15 7-14 8-16
1,6-2 15-25 14-20 15-20
2,5-3 18-30 15-20 20-30

Правильно выбранные режимы сварки отличаются стабильным процессом сварки и легким зажиганием дуги.
[context] См. также

Инструкция по полуавтоматической сварке сталей.

№1.1-58-00

  1. Общие положения

1.1.Инструкция содержит основные положения по полуавтоматической сварке плавящимся электродом углеродистых, низколегированных и высоколегированных сталей в среде углекислого газа и в смеси газов при изготовлении металлоконструкций и аппаратов.

1.2.Настоящая инструкция является руководящим документом для технологов, производственных мастеров, мастеров БКК, а также рабочих, связанных с изготовлением аппаратура из углеродистых, низколегированных и высоколегированных сталей.

  1. Сварочные материалы

2.1. Выбор сварочных материалов определяется требованиями конструкторской документации на конкретное изделие.

2.2. Сварочная проволока должна быть ровной, без перегибов, на ее поверхности не должно быть трещин, окалины, масел, следов коррозии и других загрязнений.

2.3. В качестве защитного газа применять двуокись углерода газообразную сорт I по ГОСТ 8050 и смеси аргона с двуокисью углерода (см. Таблицу 1).

Таблица 1 Состав сварочных смесей

  1. Квалификация сварщиков

3.1. К производству сварочных работ по изготовлению сосудов и аппаратов, подведомственных Госпромгорнадзора, допускаются сварщики сдавшие испытания в соответствии с требованиями «Правил аттестации сварщиков». Сварщики допускаются только к тем видам сварочных работ (включая способ, положение сварки и сварочные материалы), которые записаны в их удостоверении установленной формы.

4.1. Для выполнения сварки должно применяться сварочное оборудование и измерительная аппаратура, позволяющая заданные режимы и надежность работы.

4.2. Пост для полуавтоматической сварки оборудуется газовой магистралью, включающей в себя следующие газовые приборы: газовый баллон, подогреватель, осушитель, редуктор, расходомер (ротаметр). При сварке в смеси газов пост дополнительно может быть дооборудован смесителем газов, при этом подогреватель и осушитель подключаются в схему от баллона с углекислым газом.

  1. Условия выполнения работ

5.1. Сварочные работы при изготовлении сосудов и аппаратов должны выполняться в закрытых помещениях при температуре не ниже 0°С.

5.2. Режимы сварки допускается уточнять применительно к конкретным производственным условиям, сварочному оборудованию и конструктивным особенностям изделий.

5.3. Все сварные швы подлежат клеймению, позволяющему установить сварщика, выполнившего эти швы. Клейма наносятся способом, обеспечивающим их сохранность на весь период эксплуатации изделия в соответствии с ОСТ 26-291 или другой нормативной документацией.

  1. Требования к подготовке изделий под сварку

6.1. Подготовка кромок деталей под сварку производится механическим способом, допускается производить термической резкой, воздушно-дуговой строжкой с последующей механической обработкой или зачисткой наждачным кругом до полного удаления следов резки на глубину не менее 1 мм.

6.2. В стыковых соединениях деталей с различной номинальной толщиной стенок должен выполняться плавный переход от одного элемента к другому постепенным утонением более толстого элемента. Угол скоса должен быть не менее 20° (уклон 1:3). Допускается выполнять сварку стыковых швов без предварительного утонения более толстого элемента, если разность в толщинах соединяемых элементов не превышает 30% от толщины более тонкого элемента, но не более 5 мм.

6.3. Кромки и прилегающие к ним поверхности должны быть зачищены с двух сторон на ширину не менее 20 мм. Зачистку следует производить до полного удаления грата и и брызг после термической резки, краски, масел и других загрязнений. Зачистку производить стальной щеткой, наждачным кругом и др. На углеродистых и низколегированных сталях допускается удаление масел газопламенными горелками (без применения растворителей), при этом ширина газопламенной обработки обезжиривания должна быть не менее 100 мм.

6.4. С целью предотвращения коррозии или повторного загрязнения необходимо, чтобы зачистка свариваемых кромок, сборка и сварка производилась без значительных разрывов во времени. При обнаружении коррозии или загрязнения кромок собранного изделия необходимо провести повторную зачистку.

6.5. Методы сборки элементов под сварку должны обеспечивать правильное взаимное расположение сопрягаемых элементов, и свободный доступ к выполнению сварочных работ в последовательности, предусмотренной технологическим процессом.

6.6. Разделка кромок и зазор между кромками деталей, подлежащих сварке, должны соответствовать требованиям чертежей, ГОСТ 14771 и СТП 3300-1.14.51.

6.7. Прихватку выполняют квалифицированные сварщики, теми же сварочными материалами, что и сварку, допускается прихватку выполнять ручной электродуговой сваркой электродами в соответствии с ОСТ 26-291.

6.8. Длина прихваток должна составлять (2-10)S, но не более 100 мм, а расстояние между ними (10-40)S, но не более 500 мм, где S – толщина свариваемого металла. Для разнотолщинных материалов длина прихватки должна составлять (1-5)S, но не более 50 мм, а расстояние между ними (5-20)S, но не более 250 мм, где S – толщина свариваемого материала. Технологическим процессом может быть предусмотрена схема расположения, количество и последовательность выполнения прихваток при сборке конкретных узлов под сварку.

6.9. Прихватки рекомендуется распологать со стороны противоположной выполнению первого прохода.

6.10. Прихватки должны быть тщательно очищены от шлака, проверены на отсутствие недопустимых дефектов внешним осмотром. Участки, имеющие дефекты, перед сваркой необходимо удалить.

6.11. Сварщик должен приступать к сварочным работам только после установления отделом технического контроля правильности сборки и зачистки всех поверхностей, подлежащих сварке.

  • Начало работы

7.1. Каждый сварщик должен быть ознакомлен с инструкцией по эксплуатации полуавтоматов и выполнять требования этой инструкции.

7.2. Перед началом работы каждый баллон со смесью необходимо взболтать для предотвращения разделения компонентов смеси из-за их раздельного удельного веса.

7.3. Перед использованием каждого нового баллона производится пробная наплавка валика длиной 150-200 мм, шириной не менее 10 мм и высотой 5-6 мм на пластину с последующей зачисткой шлифмашинкой и визуальным контролем на отсутствие недопустимых дефектов с помощью лупы с не менее, чем 10 кратным увеличением.

  • Технологические указания по сварке в среде защитных газов

8.1. Техника полуавтоматической сварки в среде защитных газов подобна технике ручной сварки покрытым электродом. Присварке тавровых соединений применяют те же приемы, что и при сварке стыков, причем угол между вертикальной стенкой изделия и электродом должен быть в пределах 25-35°. Электрод либо направляют точно в угол, либо смещают на 1-1,5 мм на горизонтальную полку.

8.2. Полуавтоматическая сварка в углекислом газе и смесях газов выполняется на постоянном токе обратной полярности (плюс на электроде) и применяется для сварки швов во всех пространственных положениях.

8.3. Для обеспечения качественной защиты необходимо применять меры по исключению сквозняков в зоне сварки.

8.4. При сварке в нижнем положении стыковых соединений большой толщины с V-образной разделкой кромок первый слой (корень) шва выполняют равномерным поступательным или возвратно-поступательным перемещением электрода. Средние слои многослойного шва выполняют при перемещении электрода по вытянутой спирали, а верхние слои – змейкой. Шаг перемещений и амплитуда поперечных колебаний электрода зависит от ширины разделки, определяемой в свою очередь номером слоя шва. При этом шаг продольных перемещений равен примерно 3-6 мм, а амплитуда поперечных колебаний 10-30 мм.

8.5. Во избежание больших сварочных напряжений, в первую очередь рекомендуется выполнять стыковые шва в свободном состоянии, затем остальные стыковые швы и в последнюю очередь – угловые.

8.6. Сварочную дугу следует обрывать после заполнения кратера и обдувки газом до потемнения металла.

8.7. При сварке швов стыковых, тавровых и угловых соединений должны соблюдаться следующие требования:

  • режимы сварки проверять на пробных пластинах той же толщины, из материала того же типа, что и свариваемые детали;
  • при многослойной сварке швов стыковых соединений не допускается совмещение кратеров в одном сечении (участке);
  • при многослойной сварке наложение каждого последующего слоя рекомендуется производить (после тщательной зачистки предыдущего слоя от шлака) в обратном направлении;
  • в случае обрыва дуги перед возобновлением сварки кратер шва и прилегающий к нему участок шва на расстоянии 10-25 мм должны быть очищены от шлака. При этом зажигание дуги после перерыва сварки производится на ранее выполненном шве на расстоянии 10-20 мм от кратера этого шва.

8.8. Количество слоев углового шва зависит от размера его катета

Таблица №2 Размеры катетов сварного шва и количество слоев

Оцените статью