Раствор для электролиза в домашних условиях

Привет всем. О электролизном способе очистки заржавевших деталюшек слышали многие. Но, наверное есть и такие которые имеют слабое представление о этом крайне…

Раствор для электролиза в домашних условиях

Поделки своими руками для автолюбителей

Чистка от ржавчины электролизным способом

Привет всем. О электролизном способе очистки заржавевших деталюшек слышали многие. Но, наверное есть и такие которые имеют слабое представление о этом крайне полезном действии, которое запросто заменяет щетку и пескоструйную обработку.
Вот есть у нас очень заржавленный, но ровный диск. Можно конечно было поработать над ним болгаркой с корщеткой часик-полтора, но я пошел путем для более ленивых — методом электролиза.

Для этого нужно:
1.Емкость для раствора — я приобрел большой тазик из резины (в принципе подойдет из любого диэлектрика)2.Вещество, водный раствор который будет электролитом — лучше всего сода, пищевая или кальцинированная, она не вызывает химических ожогов (как например щелочи) и легко отмывается, не способствует дальнейшей коррозии (как например поваренная соль, хлорид-ионы который потом сложно отмыть.3. Вода. Обычная из водопровода.

4. Источник ПОСТОЯННОГО тока. Лучше всего в пределах 12-24 вольт и с регулировкой и индикацией тока. Зарядное устройство или блок питания от компа подойдут.

Я использую старое ЗУ для аккумуляторных батарей на 20 А, с индикацией тока и напряжения и ступенчатой регулировкой.5. Положительный электрод-анод. Материалом для него лучше всего будет нержавейка. Если нет нержи, то на крайняк можно взять чернуху. Но электрод из обычной стали будет быстро растворятся.

Заливаем воду в сосуд. Делаем раствор. Сколько идёт соды на литр воды сказать сложно. Это зависит от формы детали, расстояния между электродами, напряжения. Я ориентируюсь по току. На тазик который я брал ушло около 600 г кальцинированной соды. Крепим «-» от источника на деталь (она у нас будет катодом). Способов есть куча. Можно струбциной ( со струбцины может облезть краска), можно болтом как я.Главное чтобы был хороший контакт. Опускаем деталь в раствор.

Крепим «+» от источника на анод. Анод, как я уже писал, лучше всего из нержавейки. Обычная сталь будет растворятся, но если нет под руками старой ненужной ложки/вилки или корыта от старой стиралки то на один раз пойдет и чернуха. Заметил, правда, что если использовать обычную сталь для анода, то на обрабатываемой детали оседает темный налет, который потом нужно смывать.

В идеале форма анода должна быть такой, чтобы охватывать всю площадь обрабатываемой детали, в противном случае процесс будет идти с разных сторон не равномерно и деталь придется переворачивать. На практике сделать такой электрод сложно, особенно если чистим крупногабаритное изделие, поэтому крутить детальку скорей все равно придётся. Лично я, в данном случае делал электроды из чернухи, так как нержавейки в этот момент не нашел. Вот форма электрода для очистки лицевой стороны диска :Для обратной:Опускаем анод в раствор. ВНИМАНИЕ! Анод и обрабатываемая деталь не должны касаться, должен быть промежуток из раствора или диэлектрика.

Включаем наш источник тока. Всё начинает бурлить в тазике — процесс начинается. Если есть показометры то смотрим на них. Скорость очистки зависит от силы тока, который идет через электроды. А она в свою очередь, зависит от мощности источника.

Регулировать ток можно 3-мя способами:
1. Самим источником (если конечно есть на нем возможность регулировки)
2. Концентрацией соды — больше соды в растворе больше ток.
3. Расстоянием между анодом о изделием которое мы чистим. Чем ближе они тем больше ток.

Какой максимальный ток ставить тут зависит от вашего источника. Можно хоть 100А, но лучше без фанатизма, лучше подождать часок-другой, чем спалить устройство, особенно если оно без защиты по перегрузке и перегреву. Лично я ставлю 10-15 А.

Нужно ещё учесть то, что при большом токе раствор нагревается (получается солевой обогреватель). Вот как выглядит раствор после часа очистки, борщик варится отличный)))После нескольких часов чистки достаем деталь и металлической щеткой под проточной водой чистим отошедшую ржавчину и смотрим на результат. Если ржавчина еще присутствует то оставляем еще на пару часиков.Вот результат:Лицевая сторонаВнутренняя сторона
Ржавчины нет совсем.
Вот пример очистки скобы тормозного механизма ВАЗ 2108

После

ВНИМАНИЕ! Газы которые выделяются в процессе электролиза это водород и кислород. Их смесь зовётся гремучим газом, хоть и совсем не ядовитая, но очень ВЗРЫВООПАСНАЯ! Поэтому работы проводить в очень хорошо проветриваемом помещении, либо на свежем воздухе!

Автор; Владимир Бездух г.Тернополь, Украина

Домашний электролиз своими руками

Когда я был маленький, я всё время хотел что-либо делать сам, своими рукам. Вот только родители (и другие родственники) обычно этого не разрешали. А я не видел тогда (и до сих пор не вижу) ничего плохого, когда маленькие дети хотят учиться

Конечно, я написал эту статейку не для того, чтобы вспомнить детские переживания в попытках начать самообразование. Просто совершенно случайно, когда я бродил на otvet.mail.ru я наткнулся на вопрос подобного рода. Какой-то маленький мальчик-подрывник спрашивал, как в домашних условиях произвести электролиз. Ему я, правда, не стал отвечать, т. к. уж больно подозрительные смеси хотел электролизировать этот мальчик Решил, что от греха подальше не скажу, пусть сам в книгах ищет. Но вот недавно, опять же бродя по форумам, увидел подобный вопрос от школьного учителя химии. Судя по описанию его школа настолько бедная, что не может (не хочет) приобрести электролизёр рублей за 300. Учитель (вот беда!) не смог найти выход из сложившейся ситуации. Вот ему я помог. Для тех, кому любопытны такого рода самоделки я выкладываю эту статью на сайт.

Собственно, процесс изготовления и применения нашего самопала крайне примитивный. Но о технике безопасности я расскажу в первую очередь, а про изготовление — уже во вторую. Дело в том, что речь пойдёт о показательном электролизёре, а не о промышленной установке. Поэтому для безопасности лучше будет запитать его не от сети, а от пальчиковых батареек или от аккумулятора. Естественно, чем больше будет напряжение, тем шустрей пойдёт сам процесс электролиза. Но для визуального наблюдения пузырьков газа вполне хватит 6 В, а вот 220 — это уже слишком. С таким напряжением вода, например, скорее всего будет бурлить, а это не совсем безопасно… Ну, с напряжением думаю разобрались?

Теперь поговорим о том, где и на каких условиях мы будем проводить эксперимент.
Во-первых, это должно быть либо открытое пространство, либо хорошо проветриваемое помещение. Хотя я всё делал в квартире с закрытыми окнами и вроде ничего
Во-вторых, эксперимент лучше проводить на хорошем столе. Под словом «хороший» подразумевается то, что стол должен быть устойчивым, а лучше массивным, жёстким и прикреплённым к полу. При этом покрытие стола должно быть устойчивым к агрессивным веществам. Кстати, для этого хорошо подходит кафельная плитка (хотя и не любая, к сожалению). Такой стол пригодится вам не только для этого опыта. Впрочем, я всё сделал на обычной табуретке
В-третьих, в ходе эксперимента вам не потребуется перемещать источник питания (в моём случае — батарейки). Поэтому для надёжности их лучше сразу положить на стол и закрепить, чтобы они не сдвигались с места. Поверьте, это удобней, чем придерживать их постоянно руками. Свои батарейки я просто примотал изолентой к первому попавшемуся жёсткому предмету.
В-четвёртых, посуда, в которой будем проводить эксперимент пусть будет небольшой. Обычный стакан подойдёт или рюмка. Кстати, это самый лучший способ использования рюмок дома, в отличие от разлития в них спиртного с последующим употреблением…

Ну а сейчас перейдём непосредственно к прибору. Он представлен на рисунке, а я пока объясню коротко что и с чем.

Нам нужно взять простой карандаш и удалить с него дерево при помощи обычного ножа и достать из карандаша целый грифель. Можно, правда, взять грифель от механического карандаша. Но тут есть сразу две сложности. Первая — банальная. Грифель от механического карандаша очень тонкий, нам такой просто не подойдёт для наглядного эксперимента. Вторая сложность — это какой-то странный состав нынешних грифелей. Такое ощущение, что их делают не из графита, а из чего-то иного. В общем, с таким «грифелем» у меня опыт не получился вообще даже при напряжении 24 В. Поэтому мне пришлось расковырять старый добрый деревянный простой карандаш. Полученный графитовый стержень будет служить нам электродом. Как вы понимаете, электродов нам нужно два. Поэтому идём ковырять второй карандаш, либо просто сломаем имеющийся стержень пополам. Я сделал именно так.

Любым попавшимся под руку проводом обматываем первый грифель-электрод (одним концом провода), и этот же провод подключаем к минусу источника питания (другим концом). После этого берём второй грифель и проделываем с ним тоже самое. Для этого нам, соответственно, нужен второй провод. Но на этот раз подсоединяем этот провод к плюсу источника питания. Если у вас возникнут проблемы в процессе прикрепления хрупкого графитового стержня к проводу, можете воспользоваться подручными средствами: изолентой или скотчем. Если не получилось обмотать кончик графита самим проводом, а скотч или изолента не обеспечили плотного контакта, то попробуйте приклеить грифель токопроводящим клеем. Если такого у вас нет, то хотя бы привяжите грифель к проводу при помощи нитки. Не бойтесь, нитка не сгорит от такого напряжения 🙂

Для тех кто ничего не знает о батарейках и элементарных правил их соединения я немного поясню. Пальчиковая батарейка выдаёт напряжение 1,5 В. На рисунке у меня две таких батарейки. Причём соединены они последовательно — одна за другой, а не параллельно. При таком (последовательном) соединении итоговое напряжение будет суммироваться из напряжения каждой батарейки, т. е. у меня это 1,5 + 1,5 = 3,0 В. Это меньше заявленных ранее шести вольт. Но мне было лень сходить купить ещё несколько батареек. Принцип вам и так понятен должен быть 🙂

Приступим к эксперименту. Для примера ограничимся электролизом воды. Во-первых, она очень доступна (я надеюсь, что читающий эту статью не живёт в Сахаре), а во-вторых — безопасна. Кроме того, я покажу, как одним и тем же прибором (электролизёром) с одним и тем же веществом (водой) сделать два разных опыта. Думаю, что у вас фантазии хватит, чтобы напридумывать ещё кучу подобных опытов с другими веществами 🙂 В общем, для нас подойдёт вода из крана. Но я советую вам ещё немного её и посолить. Немного — это значит очень маленькую щепотку, а не целую десертную ложку. Это очень важно! Хорошо размешайте соль, чтобы она растворилась. Так вода, являясь в чистом состоянии диэлектриком, станет хорошо проводить электричество. Перед началом эксперимента протрите стол от возможной влаги, а затем поставьте на него источник питания и стакан с водой.

Опускаем оба электрода, находящихся под напряжением, в воду. При этом следите, чтобы в воду был опущен только графит, а сам провод не должен касаться воды. Начало эксперимента может затянуться. Время зависит от многих параметров: от состава воды, качества проводов, качества графита и, естественно, напряжения источника питания. У меня начало реакции затянулось на несколько секунд. На том электроде, который был подключён к плюсу батареек начинает выделяться кислород. На электроде, подключённом к минусу будет выделяться водород. При этом заметьте, что пузырьков водорода больше. Мелкие пузырьки облепляют ту часть графита, которая погружена в воду. Затем некоторые из пузырьков начинают всплывать.

Электрод перед началом опыта. Пузырьков газа пока нет. Пузырьки водорода, появившиеся на электроде, подсоединённому к отрицательному полюсу батареек

Какие опыты могут быть ещё? Если с водородом и кислородом вы уже наигрались, можно приступать ко второму опыту. Он более интересен, особенно для домашних экспериментаторов. Интересен тем, что его можно не только увидеть, но и унюхать. В прошлом опыте мы получали кислород и водород, которые, как я считаю, не слишком зрелищны. А во втором опыте мы получим два вещества (полезных в хозяйстве, между прочим). Перед началом эксперимента следует прекратить предыдущий эксперимент и просушить электроды. Теперь берите поваренную соль (которой вы обычно используете на кухне) и растворяйте её в воде. На этот раз в большом количестве. Собственно, большое количество соли — это единственное, чем второй опыт отличается от первого. После растворения соли можно сразу повторить эксперимент. Теперь происходит другая реакция. На положительном электроде теперь выделяется не кислород, а хлор. А на отрицательном всё так же выделяется водород. Что же касается стакана, в котором находится раствор соли, то в нём после продолжительного электролиза останется гидроксид натрия. Это всем знакомый едкий натр, щёлочь.

Хлор вы сможете учуять по запаху. Но для большего эффекта я советую взять напряжение хотя бы 12 В. Иначе запах можно не почувствовать. Наличие щёлочи (после очень продолжительного электролиза) в стакане можно проверить несколькими способами. Самый простой и жестокий — опустить руку в стакан. Народная примета гласит, что если начнётся жжение — в стакане есть щёлочь. Более гуманный и наглядный способ — это лакмусовая бумажка. Если же у вас настолько бедная школа, что не может даже лакмус купить, вас выручат подручные индикаторы. Одним из таких, как говорят, может послужить капелька свекольного сока 🙂 Но можно просто капнуть в раствор немного жира. Насколько мне известно, должно произойти омыление.

Для особо любознательных я опишу, что же именно происходило во время опытов. В первом опыте под действием электрического тока происходила такая реакция:
2 H2O >>> 2 H2 + O2
Оба газа, естественно, всплывают из воды на поверхность. Кстати, всплывающие газы можно уловить ловушками. Сами сделать сможете?

Во втором опыте реакция была уже совсем другой. Она тоже была инициирована электрическим током, но теперь в качестве реагентов выступила не только вода, но и соль:
4H2O + 4NaCl >>> 4NaOH + 2H2 + 2Cl2
Учтите, что реакция должна идти в избытке воды. Чтобы определить, какое же количество соли является максимальным, можно высчитать его из вышеприведённой реакции. Можете ещё подумать, как усовершенствовать прибор или какие ещё опыты можно провести. Вполне возможно, что электролизом можно получить гипохлорит натрия. В лабораторных условиях его обычно получают пропусканием газообразного хлора через раствор гидроксида натрия.

Toyota Corolla AE104 FullTime 4WD › Бортжурнал › Электролиз (очистка от ржавчины) в домашних условиях. Краткое пособие без претензии на научную ценность.

Всем доброго времени суток!

Третьего дня занимался своими новыми-старыми суппортами 54-22. В связи с отсутствием лишних средств и реальной возможности (никто не делает) отдать на пескоструйку, а так же по причине личного интереса опробовал интересный метод очистки от ржавчины черных металлов под названием электролиз.
(Кто-то может назвать его иначе, но сути не меняет).

Вскользь я описывал процесс в предыдущих записях, но так как сам при подготовке долго искал инфу, решил вывалить на вас все что мне стало известно в одной записи. Мало-ли, может кому пригодится.

Итак, начнем.

1. Физика процесса. Подчинена простейшему закону гражданина Фарадея:

Как видно из формулы — чем больше ток и время его воздействия, тем больше «ржавчины» перенесет магическая сила электролиза. Из этого можно сделать два важных для нас вывода:

1. По-любому есть какая-то определенная сила тока, оптимальная для очистки. Да, она есть и лежит в пределах 4 — 10А при напряжении 12В. Установлено это экспериментально и не только мной. К тому же при использовании обычного БП от компьютера нагружать его свыше 10-12А… ну я лично не стал бы).

2. Величина тока зависит от площади анода и катода (куска металла и самой детали), а так же от плотности электролита (количества чистящего средства, погруженного в раствор). Таким образом если у вас есть только БП от компа, где токнапряжение регулировать в стоке невозможно — меняем либо площадь, либо плотность электролита для достижения «золотого тока».

2. Схема подключения.
Ну тут все просто. Минус — на деталь. Плюс на металл. Кстати с металлом попрощайтесь заранее, если только это не нержавейка. Сожрет его ржа)

3. Материалы.
1. Понадобится в идеале емкость из нержавейки, но у меня ее нет, поэтому я использую оцинкованные ведра. Надолго их не хватает конечно.

Советую прикупить еще пластиковое ведро, ибо когда из дырок в оцинковке польется ржавая вода прямо на пол будет не очень приятно)

2. Некое вещество, которое поможет создать «очищающий элексир».
Я использовал поначалу «САНОКС». В принципе чистит хорошо, но воняет и оставляет черные окислы в местах, где было совсем уж много ржы. (Хотя возможно я не доварил).

Также пробовал «КРОТ» для очистки труб. Шляпа полная, не чистит по сравнению с САНОКСом вообще. Не рекомендую категорически.

Ну и недавно в магазине, название которого означает «пересечение нескольких дорог» рекламная пауза нашел короля электролиза — пачку кальцинированной соды.

Лучшее из всего что пробовал. Почти не воняет, нет окислов на металле. Чистит лучше санокса. Рекомендую.

3. Соединительные провода на деталь — лучше использовать стальные. Меньше окисляются, как мне кажется. Но темного налета однозначно меньше стало, когда я поменял медные провода на стальные.

4.Щетки ручные для очистки в промежуточных этапах. Лучше парочку с различным «ворсом».

4. Сроки очистки и результаты.
Сроки напрямую зависят от того, как сильно деталь «окружена» анодом — поэтому я использую ведро. Так очистка идет веселее и со всех сторон. Если просто поставить пластинку — обратная к ней сторона будет очищаться медленнее.
Так же, само собой, чем больше ток, тем быстрее очистка. В целом при токе 5-6А на очистку средних размеров суппорта нужно 2-3 дня. Да, вот так)

5. Пример промежуточной очистки и пара заключительных наблюдений.

Берем наш суппорт. Или что вы там собрались чистить) В первую очередь разбираем и вынимаем все резинки. Не скажу, что на них электролиз влияет отрицательно, но санокс точно)))

Эксперимент: как в домашних условиях покрыть деталь медью, никелем, латунью и алюминием при помощи электролиза

Медь, никель, латунь и алюминий обладают стойкостью к коррозии, поэтому их тонкий слой на поверхности стали может защитить ее от появления ржавчины. Нанести один металл на другой можно методом электролиза. Но он работает не всегда. Давайте проверим его на предложенных металлах.

Что потребуется:

  • образцы металлов;
  • уксус;
  • соль;
  • блок питания постоянного тока;
  • пластиковые емкости.

Процесс электролиза меди, никеля, латуни и алюминия

Для электролиза необходимо подготовить электролит. В его качестве применяется уксус. Процесс выполняется в пластиковой емкости, так как она является диэлектриком. В уксус добавляется соль для лучшей проводимости.

Для меднения необходимо согнуть из медной проволоки 2 электрода, опустить их в электролит и подключить провода к питанию.

Спустя 20 мин электрод на плюсовой клемме очистится от окиси, которая перейдет на отрицательный.

Теперь если подключить к минусовому проводу стальной предмет, то он покроется равномерным аккуратным слоем меди.

Для никелирования повторяется аналогичное действие с двумя электродами уже из этого металла. Через 20 минут к минусовому проводу цепляется стальная деталь. Она также покроется слоем никеля.

Если же повторить эксперимент с латунью, то ничего не получится. На стальной детали появится только окись. Выглядеть, как латунная она не будет.

Не работает и перенос алюминия на сталь. При электролизе электролит только загрязниться, станет темно-серым. Сама же деталь вообще останется неизменной.

Смотрите видео

Если дома нечего делать или Электролиз в домашних условиях

Давно хотели заняться химией? Для взрыва квартиры надоедливого соседа ещё пока рановато, но надо же с чего-нибудь начинать. В этом видео я покажу как провести электролиз поваренной соли дома — получится водород, гидроксид натрия и хлорид меди. Если же заменить одну из палочек (проводок с зарядом плюс) на углеродную — получится хлор, ядовитый зелёный газ. Вот им мы и будет травить соседа.

Если будет спрос, в следующий раз покажу как из обычной поваренной соли получить соляную кислоту (HCl) и едкий натр (NaOH) — начальный набор любого химика без закупки реактивов в хим маге.

Дубликаты не найдены

Сосед превратил пустырь в цветущий сад

Десять лет подряд он в каждую свободную минуту выходил на пустырь возле своего дома. Теперь на месте участка, заросшего травой и мусором, цветущий сад с редкими для севера деревьями, зонами отдыха и даже детской площадкой.

Магия гальванопластики

Как превратить высохший лист дуба в медный с помощью гальванопластики

Сернокислый электролит блестящего меднения

Ночник из картона своими руками

Привет, Друзья! В этом выпуске покажу как сделать ночник из картона своими руками.

Пустячок, а приятно

В этом году встретили Новый год в новой квартире и в процессе подготовки немного украсили подъезд: пара милых наклеек в лифте, небольшая инсталляция на первом этаже и лёгкий квест для наших и соседских детей в процессе которого они украсили новогодними шариками (приклеили по шарику) все двери в подъезде.

Получилось мило и нарядно.

И вот получили обратную связь:

Пустячок, а так приятно!

Приятно, что смогли поднять людям настроение и привнести свою лепту в создание праздничного настроения.

В следующем году обязательно повторим!

А может кто из соседей подключится 🙂

Серебряный шар

Изготовление зеркал способом серебрения основано на принципе осаждения (восстановления) из азотнокислого серебра металлического серебра.

Amalgama chto eto takoe 810×540

Осаждение серебра осуществляется при помощи восстановителей — инвертированного сахара, виннокаменной кислоты и др. и возможно только из щелочных растворов азотнокислого серебра.

Основными активными веществами, с помощью которых ведется процесс серебрения, являются соли серебра; главным образом азотнокислое серебро и восстановители. Для создания среды, благоприятствующей быстрому выделению серебра из растворов его солей, обычно пользуются аммиаком и едким натрием, или едким калием.

Необходимо указать, что создание щелочной среды еще не всегда бывает достаточным для успешного ведения процесса серебрения. Так, например, если применять сахар-рафинад в виде восстановителя, это не даст хороших результатов, так как сам сахар не обладает восстановительной способностью. Эта особенность свойственна только одной его составной части — виноградному сахару. Поэтому, для того чтобы восстановить металлическое серебро из раствора азотнокислого серебра при помощи сахара-рафинада, надо путем добавления небольшого количества серной или азотной кислоты разложить сахар на составные части.

Для успешного осуществления процесса серебрения необходимо создать определенные условия, при которых температура окружающей среды должна быть не выше 25°.

Так, например, если серебрение производить в обычных условиях, применяя в качестве восстановителя концентрированный раствор инвертированного сахара, то серебряный слой образуется через 10 минут и зеркало получается хорошего качества. При низкой окружающей температуре воздуха серебряный слой образуется только через 30 минут и качество зеркала будет плохое.

Горячий концентрированный раствор может дать хорошее качество зеркала, но практически процесс серебрения в этих условиях осуществить трудно, так как все металлическое серебро может быть выделено в сосудах прежде, чем произойдет осаждение серебра на поверхность стекла.

Все вещества, применяемые в процессе серебрения, должны быть химически чистыми. Это в равной степени относится и к воде, которая играет важную роль в подготовительных и вспомогательных процессах серебрения (промывка, разбавление растворов и т. п.), поэтому она должна быть дистиллированной.

Способы серебрения

Существуют два способа серебрения стекла: холодный и горячий.

При ведении процесса серебрения стекла горячим способом все операции с растворами на наводном столе производят с подогревом, три температуре наводного стола 35-40°.

При ведении серебрения холодным способом все операции с растворами и на наводном столе производят без подогрева, при температуре наводного веха, которая обычно бывает 25-26°.

air bubbles 3054937 1280

Горячий способ серебрения

Серебрение горячим способом производят на специальных, закрытого типа столах, обогреваемых паром или горячей водой, циркулирующей по трубам внутри стола.

Столы для этой цели применяют чугунные или деревянные обитые жестью снаружи и цинком изнутри, а крышки покрывают сланцевыми пластинами и водонепроницаемым составом, выдерживающим высокую температуру, или плотно спрессованным войлоком. Крышка не должна пропускать пар во время процесса серебрения, так как это может испортить серебряную амальгаму.

Процесс серебрения осуществляют следующим образом: предварительно промытое стекло укладывают на крышку горячего стола и покрывают серебрильной жидкостью, состоящей из раствора азотнокислого серебра, нашатырного спирта и едкого натра или едкого калия, к которым в самый последний момент примешивают восстановитель. Стол устанавливают в строго горизонтальном положении, чтобы уровень жидкости был одинаковым на всей поверхности стекла. С момента прибавления восстановителя жидкость отставляют в состоянии покоя на 10-15 минут, а затем раствор с поверхности стекла убирается ручной кожаной воздуходувкой.

Серебрение таким способом производят обычно два раза. Горячий способ более кропотлив и требует большой точности ведения процесса, но слой серебра получается более стойким.

Холодный способ серебрения

Холодный способ серебрения осуществляется наливным методом и с помощью пульверизатора.

Наливной метод состоит в следующем: смесь серебрильной жидкости и восстановителя быстро выливают на поверхность стекла, уложенного строго горизонтально на специальных столах. При выливании серебрильного раствора нужно следить, чтобы он равномерно распределялся по всей поверхности стекла. В зависимости от рецептуры серебрения продолжительность процесса осаждения серебра длится от 5 до 10 минут. Наибольшее количество серебра выделяется при первом заливе за первую минуту. Как правило, за 5-6 минут достигается максимальная толщина слоя серебра, и дальнейшее удерживание серебрильного раствора на поверхности стекла бесполезно.

Температура среды и температура растворов имеет при этом большое значение – оптимальный показатель 25°. При температуре ниже 25° осаждение серебра идет медленнее, а серебро за 6 минут полностью не осядет. Температура выше 25° не увеличивает интенсивность осаждения слоя серебра. Серебрение растворами, нагретыми до 40-60°, приводит к браку на зеркалах.

Время от времени жидкость с поверхности стекла сдувают при помощи ручных мехов. Отсутствие жидкости благоприятствует получению осадка в виде однородного слоя -пленки.

По окончании процесса выделения металлического серебра остаток серебрильной жидкости сливают с поверхности стекла, и оно сушится.

При серебрении методом пульверизации серебрильную жидкость и восстановитель не выливают, а распыляют по поверхности пульверизатором. Пульверизаторы бывают разных конструкций, вследствие чего различается принцип их действия.

Холодный способ серебрения проще и удобнее горячего, но слой серебра, нанесенный на стекло холодным способом, менее устойчив: если зеркало попадет в сырое помещение, металлический слой серебра начинает разлагаться, и на поверхности зеркала выступят различные пятна и полосы.

Оцените статью