Рекомендуемое содержание углерода в стали для сварки

Данная статья поможет каждому человеку разобраться, что же такое углеродистые стали, какие у них свойства и податливость к сварочному процессу.
Содержание

Рекомендуемое содержание углерода в стали для сварки

Виды углеродистых сталей и их сварка

Самый потребляемый в мире металл – сталь, фактически сталь – это не металл, а сплав железа с углеродом. На данный момент общее количество производимой стали в мире превышает полтора миллиарда тонн в год. Стали подразделяются на углеродистые и легированные, легированные отличаются тем, что в процессе производства в сталь добавляют различные элементы (например никель, для увеличения сопротивления коррозии, марганец для увеличения прочностных характеристик и так далее), придающие ей особые свойства. Углеродистые стали используются чаще всего для сваривания, существуют низкоуглеродистые стали, содержащие менее 0,3 % углерода, они хорошо поддаются любой сварке, среднеуглеродистые с содержанием от 0,3 до 0,6 % поддаются сварочному процессу хуже, зато прочнее, но менее пластичнее, высокоуглеродистые стали самые прочные, но имеют небольшое относительное удлинение, поддаются сварочному процессу хуже всех. Отличаются они по содержанию углерода, а, следовательно, по химическим и физическим свойствам.

Малоуглеродистая сталь и ее свойства

Низкоуглеродистая сталь относится к большой группе конструкционных. Содержание углерода в ней не больше 0,3 %, из-за такого невысокого процентного содержания она имеет следующие свойства:

  • Высокая пластичность и упругость;
  • Хорошо поддается сварочному процессу;
  • Высокая ударная вязкость.

Данная марка нашла широкое применение в строительстве благодаря тому, что она очень легко сваривается, так как в ее структуре очень мало углерода, который плохо влияет на сварочный процесс, так как в металлическом шве могут образовываться хрупкие структуры и пористости, которые затем приводят к поломке. Также из-за высокой мягкости из нее изготавливаются детали методом холодной штамповки.

Сварка углеродистых сталей

Сваривать возможно абсолютно все марки стали. Однако для сварки каждого вида металла существует своя технология. Технология сварки углеродистых сталей должна соответствовать требованиям, которые включают в себя:

  • Равномерное распределение прочности шва по всей длине;
  • Отсутствие сварных дефектов, швы не должны иметь различных трещин, пор, нарезов и так далее;
  • Размеры и геометрическая форма шва должны быть выполнены в соответствие с нормами, прописанными в соответствующем ГОСТе 5264-80;
  • Вибрационная устойчивость свариваемой конструкции;
  • Использование электродов с пониженным содержанием водорода и углерода, которые могут оказать негативное влияние на качество шва;
  • Конструкция должна быть прочной и жесткой.

Таким образом, технология должна быть максимально эффективной, то есть давать наивысшую производительность процесса при обеспечении высокой прочности и надежности.

Механические свойства металла шва и сварного соединения полностью зависят от микроструктуры, которая представляет собой химический состав, а также определяется режимом сварки и термообработкой, которая осуществляется как до, так и после сваривания.

Низкоуглеродсиая сталь: технология сварки

Как уже было сказано выше, низкоуглеродистые стали поддаются сварочному процессу лучше всего. Они могут свариваться с помощью газовой сварки в ацетиленкислородном пламени без дополнительных флюсов. В качестве присадки используются металлические проволоки. Негативно повлиять на сварочный процесс может водород, который способен образовывать поры. Для предотвращения данной проблему рекомендуют проводить сварочный процесс с присадочным металлом, содержащим небольшое количество углерода.

После осуществления процесса сваривания конструкцию необходимо термически обработать, чтобы улучшить механические свойства – пластичность и прочность будут одинаковы. Термическую обработку сварных конструкций проводят операцией нормализации, которая заключается в нагреве изделия до определенной температуры, примерно 400 градусов, выдержке и дальнейшему охлаждению на воздухе. В результате структура уравнивается, углерод в виде цементита в металле диффундирует внутрь зерен, благодаря чему структура становится равномерной.

Газовую сварку проводят в присутствии аргона, который создает нейтральную среду. Конструкции, которые выполняются сваркой в среде аргона имеют более ответственное назначение.

Сварка низкоуглеродистых сталей может проводиться вручную, дуговая сварка такого материала требует правильного выбора электрода. При выборе электрода необходимо учитывать следующие факторы, благодаря которым обеспечиться равномерная структура шва без дефектов. Перед тем как осуществлять процесс сварки необходимо прокалить электроды, чтобы подготовить их к дальнейшей работе, убрать водород. Сварка низкоуглеродистых железных сплавов должна быть точной т быстрой, перед началом процесса нужно подготовить металлические детали.

Сварка среднеуглеродистых

Процедура сварки стальных деталей со средним содержанием углерода, от 0,3 % до 0,55 % сложнее по сравнению с низкоуглеродистым, так как большее количество углерода может негативно повлиять на сварочный шов. Углерод уменьшает предел хладноломкости – то есть разрушении при низких температурах, увеличивает прочность и твердость, однако снижает пластичность шва.

Для сварки применяются электроды с пониженным содержанием углерода, которые обеспечивают прочное соединение.

Сварка высокоуглеродистых сталей

Стали, имеющие высокий процент содержания углерода, от 0,6 % до 0,85 %, очень плохо поддаются сварочному процессу. Газовая сварка применяться в данном случае не может, так как в процессе углерод выгорает в больших количествах и образуются закалочные структуры, которые ухудшают качество шва. Лучше всего в данном случае применять дуговую сварку.

Требования

Во время сварки углеродистых сталей для достижения максимальных параметров необходимо соблюдение следующих требований:

  • Сварные электроды и проволока должны иметь низкий процент углерода, чтобы избежать появление ненужных дефектов;
  • Необходимо следить, чтобы углерод из металла под действием высокой температуры не переходил в сварной шов, для этого применяется проволока для сварки сталей со средним содержанием углерода и выше, например Forte E71T-1, Барс-71. Данные типы отлично подойдут для сварки сталей с содержанием углерода выше 0,3 %;
  • При проведении сварочного процесса следует добавлять флюсы, которые способствуют образованию тугоплавких образований;
  • Снижать химическую неоднородность шва путем последующей термической обработки;
  • Снижать содержание водорода путем прокалки электродов, использованием электродов с низким содержанием водорода и прочее.

Особенности

Также следует отметить следующие особенности проведения сварки углеродистых сталей:

  • Перед проведением данной операции нужно тщательно очищать свариваемый материал от ржавчины, механических неровностей, грязи, окалины. Эти загрязнения способствуют образованию трещин в сварочном шве;
  • Охлаждать сварочные конструкции из углеродистых сталей нужно медленно, на воздухе, чтобы структура нормализовалась;
  • При проведении сварного процесса для ответственных деталей нужен предварительный подогрев, примерно до 400 градусов, с помощью подогрева обеспечится требуемая прочность шва, также в данном случае сварку можно осуществлять в несколько подходов.

Таким образом, процесс сваривания углеродистых сталей зависит, главным образом, от содержания в них углерода. Поэтому необходимо учитывать, какое содержание и выбирать правильную технологическую схему, чтобы получить высококачественное прочное изделие, которое сможет прослужить долгий срок.

Сварка углеродистой стали

Поговорим о газовой сварке углеродистых сталей.

Углеродистая сталь — это сплав железа с углеродом, с содержанием углерода до 2%. По назначению углеродистые стали разделяют на конструкционные (с содержанием углерода в сотых долях процента) и инструментальные (с содержанием углерода в десятых долях процента). На производстве в основном работают с низкоуглеродистыми сталями.

Углеродистые стали делятся на:

  • низкоуглеродистые стали (содержание углерода до 0,25%);
  • среднеуглеродистые стали (содержание углерода от 0,25% до 0,6%);
  • высокоуглеродистые стали (содержание углерода 0,6% — 1,7%).

Низкоуглеродистые стали

Данные стали имеют хорошую свариваемость ацетиленокислородным пламенем без применения флюса. Чем меньше содержание углерода в свариваемом металле, тем лучше будет происходить процесс сварки. В металлах с увеличенным содержанием углерода появляется вероятность образования хрупких структур, а также пористости металла шва. Улучшение структуры достигается путем проковки металла шва при температуре красного каления и медленным охлаждением. Когда сварное соединение должно работать на растяжение, изгиб и удар, это способ является особенно существенным. Для того, что бы устранить пористость металла шва нужно использовать присадочный металл с пониженным содержанием углерода (по отношению к основному металлу). В основном газовую сварку применяют для сварки тонколистового металла толщиной до 5 мм. Для больших толщин металла, сварку наиболее правильно проводить способами дуговой сварки плавлением. Так же и сваркой плавящимся электродом в среде углекислого газа. Пропан-бутан, природный газ и другие (газы-заменители ацетилена), возможны их использование для сварки металла из низкоуглеродистой стали, которые не подлежат сдаче Госгортехнадзору, так как зона термического влияния увеличивается примерно на 30%, в сравнении со сваркой ацетиленокислородным пламенем, так же снижаются механические свойства сварного соединения.

Среднеуглеродистые стали

У данных сталей присутствует свойство закаливаться после нагрева и быстрого охлаждения. Например, стали с содержанием углерода более 0,4% выгоднее сваривать дуговой сваркой плавлением, так же нельзя исключать возможность сварки ацетиленокислородным пламенем. Чтобы получить добротное сварное соединение сварочный процесс следует делать с максимальной скоростью, с предварительной и последующей термообработкой. Для газовой сварки сталей данного класса, следует применять присадочную проволоку с раскислителями (марганцем и кремнием), это делается для того, чтобы избежать выгорания углерода и образования пористости шва.

Высокоуглеродистые стали

Данные стали плохо свариваются газовой сваркой из-за сильного выгорания углерода и образования закалочных структур. Металла шва обычно содержит газовые раковины и включения. Сваривание изделия дуговой сваркой обеспечит значительно лучшие результаты.

Свариваемость углеродистых сталей газовым пламенем

Тип стали Содержание углерода в сплаве, % Назначение и область применения Оценка свариваемости
Низкоуглеродистые стали 0,06-0,15 Котельная сталь, резервуары, цельнотянутые трубы Хорошая свариваемость, шов не закаливается
Низкоуглеродистые стали 0,15-0,25 Литая сталь, трубы, котлы, приводные валы, бочки и т.д. Хорошая свариваемость, шов слегка закаливается, но не обрабатывается режущим инструментом
Среднеуглеродистые стали 0,25-0,45 Оси, шатуны, шестерни и другие детали машины Удовлетворительная свариваемость. Качественное сварное соединение при предварительном нагреве и последующей термообработке
Среднеуглеродистые стали 0,45-0,6 Инструмент, молоты, шестерни и т.д. Удовлетворительная свариваемость при использовании специального флюса и термообработки
Высокоуглеродистые стали 0,6-1,7 Пуансоны, штампы, рельсы, крестовины и т.д. Плохая свариваемость. Рекомендуется пайка или наплавка

Основные параметры и режимы газовой сварки низкоуглеродистых и среднеуглеродистых сталей

Технические и технологические особенности сварки углеродистых сталей: основные способы сварки и оборудование для каждого способа

Сталью называют сплав железа с углеродом, когда концентрация последнего составляет от 0,02% до 2,14%.

С повышением содержания углерода растут показатели прочности и твердости материала, однако, снижаются его пластичность и вязкость. Поэтому процентное соотношение C к Fe является основным критерием классификации стали, разделившим ее на три группы:

  1. Низкоуглеродистая (0,02-0,3%) – мягкие, ковкие сплавы общего применения, которые часто используются в быту (например, в виде прокатного профиля), а также в ненагруженных узлах строительных конструкций, промышленных деталей и механизмов.
  2. Среднеуглеродистые (0,3-0,6%) – сбалансированные сплавы, зачастую обладающие хорошими показателями упругости, стойкости к деформациям и усталостным нагрузкам. Применяются в машиностроении и электротехнике, в том числе для изготовления пружин, рессор, контактных пластин. Ограниченно применяются для изготовления приборов и инструментов.
  3. Высокоуглеродистые (0,6-2,14%) – прочные, но относительно хрупкие сплавы, применяющиеся для изготовления ответственных изделий, в том числе инструментов и их режущих кромок, подшипников, дроби для абразивной обработки, стальных канатов и тросов, измерительных приборов.

Кроме того, в углеродистых сталях содержатся примеси других элементов в количестве, недостаточном для того, чтобы материал считался легированным. Допустимо наличие в структуре сплава:

Фосфор, сера и газы являются нежелательными примесями, долю которых в углеродистой стали стараются свести к минимуму. В качестве микролегирования могут использоваться такие присадки, как титан, цирконий, бор, лантаноиды и некоторые другие элементы.

Значительное влияние на качество стали и ее эксплуатационные характеристики оказывает технология производства, режимы последующей термообработки и другие металлургические параметры. В общем виде классификацию сталей по методу их изготовления, назначению, содержанию тех или иных веществ можно представить в виде таблицы.

Углеродистая сталь
Конструкционная Инструментальная
Обычного качества Качественная Качественная

В качестве вида стали может указываться способ ее производства. Углеродистые стали могут изготавливаться как в мартеновских и кислородно-конвертерных печах, так и электросталеплавильным методом. Последний обеспечивает большую стабильность свойств и характеристик готового продукта.

Выбор оборудования

Тип и эксплуатационные особенности сварочного оборудования для работы с углеродистыми сталями варьируются в достаточно широких пределах и зависят от таких факторов, как:

  • выбранный метод сварки;
  • характеристики заготовок;
  • требуемое качество шва;
  • расчетный режим сварки;
  • особенности внешней среды;
  • требуемая производительность;
  • финансово-экономические критерии.

Чаще всего углеродистые стали соединяют одним из методов электродуговой сварки. Если предполагается ручная сварка и объем работ относительно мал, можно воспользоваться обычным сварочным инвертором, главные достоинства которого – компактность и дешевизна. Хорошим выбором станут модели Fubag IR 200, Wester MMA-VRD 200, Elitech АИС 200, Ресанта САИ-220 и другие.

Примерная стоимость аппаратов Ресанта САИ-220 на Яндекс.маркет

В противном случае, лучше отдать предпочтение промышленным трансформаторам с большей производительностью, например, Кавик ТДМ-252У2 (250 А, 12 кВт) или Brima ТДМ1-315-1 (315 А, 24 кВт). В зонах, где подключение к электрической сети невозможно или затруднено, используются сварочные генераторы, оснащенные двигателями внутреннего сгорания.

Для полуавтоматической сварки в среде защитных газов или под слоем флюса применяются специализированные сварочные аппараты комбинированной конструкции, которые обеспечивают генерирование сварочного тока, а также подачу в зону сварки защитного газа и плавящегося электрода (кроме того, может подаваться присадочная проволока). В нише бюджетных моделей лидирует Aurora Overman 180, в топовом сегменте – Blueweld Starmig 210 Dual Synergic.

Примерная стоимость аппаратов Aurora overman на Яндекс.маркет

Для газовой сварки потребуется наличие кислородного и ацетиленового баллонов с манометрами, гибких шлангов и горелки, позволяющей регулировать пропорциональное соотношение газов. Оборудование альтернативных видов сварки специфично, оно относится к промышленным аппаратам и крайне редко используется в быту.

Способы сварки низкоуглеродистых сталей

Низкоуглеродистые стали относятся к хорошо свариваемым материалам и практически не требуют предварительной подготовки заготовок. Если их толщина не превышает 4 мм, кромкование не проводится, а все предварительные операции ограничиваются очисткой и обезжириванием стыка. В ряде случаев, например, при сварке крупногабаритных изделий, проводится предварительный прогрев в печи до 150-200℃. Другие особенности диктуются конкретным видом сварки.

Ручная дуговая сварка

Ручная дуговая сварка проводится покрытым плавящимся электродом с углом наклона в 40-50° в направлении движения инструмента.

Для предотвращения образования закалочных структур рекомендуется выполнять швы каскадом или горкой, что способствует равномерному теплообмену с окружающим металлом и медленному остыванию стыка. Если заготовки уже подвергались закалке, шов наносят послойно, после каждого подхода ожидая полного его остывания.

Особые рекомендации даются в случае устранения трещин, сколов и других дефектов в деталях из низкоуглеродистой стали. В таком случае выбранный тип шва должен обеспечить достаточное заглубление сварочной ванны, что достигается повышением тока или сокращением длины дуги до 1-1,5 мм. Вне зависимости от размера дефекта, длина шва не должна быть меньше 100 мм. При работе с ответственными деталями зону стыка обрабатывают растворами, предотвращающими коррозию.

Дуговая сварка в защитных газах

Роль защитной среды при электродуговой сварке чаще всего играет углекислый газ (MAG-технология). Более эффективную защиту обеспечивает смесь активных газов (не более 30% кислорода) или сочетание углекислого газа с аргоном. Для ответственных соединений зачастую выбирается MIG-сварка, которая предполагает подачу к стыку аргона или гелия.

Самым распространенным присадочным материалом при дуговой сварке низкоуглеродистой стали в защитной среде является проволока Св-08Г2С. Ее подают одновременно с началом сварки, то есть через 5-15 секунд после поступления газа к стыку. Для верхнего положения используется проволока диаметром до 1,2 мм, для нижнего – до 3 мм. Угол ведения материала составляет 30-40°, электрод ведется строго перпендикулярно поверхности.

Сварка под флюсом

Автоматическая и полуавтоматическая сварка низкоуглеродистых сталей проводится под слоем флюса плавящимся прутком СВ-08 (-А, -ГА) диаметром от 1,2 до 3 мм. Роль защитных составов обычно играет смесь АН-348-А или ОСЦ-45.

Обратите внимание, что при сварке без разделывания кромок в зоне шва может повыситься содержание углерода, что повысит прочность соединения, но снизит его пластичные свойства.

Полуавтоматическая сварка малопригодна для создания угловых и сложносоставных соединений низкоуглеродистой стали, так как способствует образованию закалочных структур в околошовной зоне. Частично решить эту проблему позволяет предварительный прогрев заготовок.

Способы сварки среднеуглеродистых сталей

При сварке среднеуглеродистых сталей велик риск образования кристаллизационных трещин и закалочных структур в околошовной зоне, что, в свою очередь, снижает долговечность соединения и негативно влияет на его показатели упругости. Поэтому главными требованиями к сварке такого материала становятся особые щадящие режимы проведения работ, защита шва от образования пор и пузырьков воздуха, снижение содержания углерода в зоне стыка.

Сварка в защитной среде

При соединении заготовок из среднеуглеродистых сталей используется MIG-технология, схожая с технологией сварки низкоуглеродистых сталей. Обязательным условием является предварительный прогрев заготовок до температуры около 200℃. Применяются электроды с низким содержанием карбона и наличием дополнительных микролегирующих элементов: фтора, кальция, марганца и кремния. К ним относятся изделия марок УОНИ-13/45 (-55, -65), УП-1/45, УП-2/45, ОЗС-2, К-5А и другие.

Примерная стоимость электродов УОНИ 13/55 на Яндекс.маркет

Диаметр электрода обычно лежит в пределах 2-6 мм и определяется толщиной свариваемых заготовок. От него, в свою очередь, зависит режим сварки. Так, сила тока при сварке 3-миллиметровыми электродами в нижнем положении составляет 80-100 А, диаметру в 4 мм соответствуют значения 130-200 А, 5-миллиметровыми изделиями работают при токе 170-280 А, а 6-миллиметровыми – 210-380 А. Температура прокаливания электродов варьируется в пределах 250-400℃.

Сварка полуавтоматом

Полуавтоматическая сварка среднеуглеродистых сталей требует раздельной структуры шва, то есть его наложения в несколько ванн. При этом рекомендуется работать короткой дугой и полностью исключить любые движения электродом, кроме продольных. Как и в случае с MIG-сваркой, заготовки прогревают до температуры не более 200℃.

Особое внимание уделяется разделыванию кромок на толстых заготовках. Скосы выполняют под углом 35-45°, тщательно зачищают и обезжиривают. Важно обеспечить высокие показатели коррозионной стойкости шва. Для сохранения его упругости принимают меры для медленного и равномерного остывания стыка.

Газовая сварка

Надежным способом соединения среднеуглеродистых сталей является газовая сварка, которая может проводиться даже при низких температурах. Используется «левая» технология со стандартным или слабо науглероживающим пламенем интенсивностью 75-100 куб. м в час. При чрезмерной мощности сваривания велик риск прожогов или нежелательной закалки стыка.

После выполнения газовой сварки заготовок из среднеуглеродистой стали рекомендуется выполнить их отпуск или отжиг. При этом локальный нагрев шва не должен превышать 650℃, а общий нагрев заготовок – 350℃. Альтернативным способом является проковка стыка.

Сварка высокоуглеродистых сталей

Высокоуглеродистые стали относятся к сложно свариваемым и ограниченно свариваемым материалам ввиду их особой склонности к закалке, образованию трещин и других термических дефектов. Ввиду высокой сложности выполнения работ ручные методы электродуговой сварки практически не используются.

Газовая сварка

Основным методом соединения заготовок из высокоуглеродистой стали является газовая сварка с предварительным прогревом до 200-300℃. В ряде случаев используется и сопутствующий подогрев. Работы проводятся восстановительным пламенем или пламенем с небольшим избытком ацетилена, интенсивность – не более 90 куб. дм в час. Используется «левый» способ, позволяющий снизить время термического воздействия на металл.

В качестве присадки используется проволока Св-15 или Св-15Г, иногда – проволоки, легированные хромом, никелем, марганцем. В отличие от среднеуглеродистых сталей высокоуглеродистые не рекомендуется обрабатывать ковкой. В случае необходимости выполняется их отпуск или отжиг с полным прогревом заготовок до 350-400℃.

Другие способы сварки

Альтернативным способом соединения высокоуглеродистых сталей является лучевая сварка, которая подразделяется на электролучевую (направленный поток заряженных частиц) и лазерную (направленный поток фотонов). К недостаткам этих технологий можно отнести высокую сложность и дороговизну оборудования, к преимуществам – высокую скорость и точность проведения работ, короткое время и малую площадь температурного воздействия на стык.

Ограниченно применяются технологии контактной, плазменной, электрошлаковой сварки, которые требуют значительных ресурсозатрат, однако, не решают всех проблем, связанных с сообщением необходимых механических свойств шву. Одним из перспективных направлений является соединение заготовок высокоуглеродистых сталей между собой и с другими материалами сваркой трением.

Сварка углеродистых сталей – как правильно выполнить сварочный процесс?

Сварка углеродистых сталей имеет ряд особенностей и определенных трудностей, которые обусловлены именно тем, что углерод в них является главным легирующим элементом.

1 Главные особенности сварки углеродистой стали

К углеродистым относят стали с содержанием углерода от 0,1 до 2,07 %. Сплавы, в которых данный элемент содержится в количестве 0,6–2,07 %, называют высокоуглеродистыми, 0,25–0,6 % – среднеуглеродистыми, менее 0,25 % – низкоуглеродистыми. Технология сварки для каждой из этих групп легированных сталей своя. При этом есть и общие рекомендации, коих следует придерживаться, осуществляя сварку изделий из сплавов, включающих в свой состав на правах главного легирующего элемента углерод. О них мы и поговорим.

Стыковые швы, соединяемые полуавтоматами при помощи порошковых проволок и в защитной атмосфере, электродами покрытого вида (вручную), а также с применением газосварки, в большинстве случаев сваривают на весу. Если же используется автоматическое оборудование, необходимо применять такие методики, которые, во-первых, гарантируют достаточный провар корня шва, а во-вторых, исключают вероятность образования прожогов.

Для разных методов сварки имеются собственные стандарты, которые описывают требования к параметрам швов и процессу подготовки кромок соединяемых деталей. Сварные конструкции с целью надежной фиксации между собой компонентов, входящих в них, рекомендовано собирать, используя специальные прихватки либо сборочные приспособления.

Прихватки, как правило, применяют при полуавтоматическом процессе в углекислом газе либо при использовании покрытых электродов для легированных углеродистых сталей. Толщина металла определяет длину указанных прихваток, а площадь их сечения обычно составляет порядка 2,5–3 сантиметров (до трети площади сечения получающегося сварного шва). Желательно производить их накладку с той стороны, которая является обратной по отношению к однопроходному главному шву. В тех случаях, когда речь идет о многопроходных швах, прихватки накладывают с обратной стороны по отношению к самому первому слою.

Перед началом сварки прихватки в обязательном порядке следует скрупулезно зачистить и провести их визуальный осмотр. Если при таком осмотре обнаруживают трещины, их обязательно удаляют. Еще один момент – необходимо добиваться полного переплавления используемых прихваток. В противном случае из-за повышенной скорости отвода тепла на них могут возникать трещины, которые ухудшают свариваемость и делают весь процесс сварки некачественным.

Электродуговая сварка углеродистых сплавов демонстрирует высокую эффективность при наложении нескольких швов и при сваривании изделий в двух сторон. Многослойная сварка рекомендована для деталей, имеющих большую толщину, а также для конструкций, работающих в ответственных условиях. Если после процесса в швах обнаруживаются подрезы, трещины, поры, непровары и прочие дефекты, следует:

  • механически удалить металл в «опасном» месте;
  • выполнить зачистку зоны дефекта;
  • произвести подваривание зачищенной области.

При использовании электрошлакового способа сварки изделия нужно монтировать с некоторым зазором, который к концу должен иметь небольшое расширение. Фиксация взаимного расположения элементов свариваемой конструкции производится при помощи скоб (дистанция между ними – от 50 до 100 сантиметров). Кроме того, при электрошлаковом процессе и при дуговой автоматической сварке на шве (в начале и в конце) монтируют планки, которые облегчают процедуру и обеспечивают заданные параметры шва.

2 Как выполняется сварка низкоуглеродистых сталей?

Свариваемость таких сталей среди профессионалов считается сравнительно простой, если применять любые способы и типы соединения деталей методом плавления. Конкретная технология сварки при этом назначается с учетом того, что в сварном соединении по окончании процедуры не должно быть никаких значительных дефектов.

Стоит заметить, что при сварке легированных сплавов с низким содержанием углерода основной металл имеет ряд отличий от металла шва:

  • в металле соединения увеличивается доля кремния и марганца, а вот углерода становится меньше;
  • наблюдается изменение механических характеристик околошовного металла (электрическая и ручная дуговая сварка обычно приводят к несущественному упрочнению материала в перегретой области);
  • есть вероятность того, что металл около шва снизит показатель своей ударной вязкости (такое наблюдается при сварке нестареющих легированных сплавов);
  • при многослойном сварочном процессе металл шва способен быстро охрупчиваться.

Все эти отличия не оказывают значительного влияния на качество шва, полученного сваркой плавлением.

Также никаких трудностей не возникает и при газовой сварке сталей, легированных небольшим количеством углерода (до 0,25 %). Причем, как правило, флюс при газовой операции не применяется. При правом методе такой сварки на один миллиметр толщины свариваемого изделия расходуется от 120 до 150 кубических дециметров ацетилена в час, при левом – от 100 до 130. Допускается использовать и более мощное пламя (расход – до 200 кубических дециметров). Но тогда необходимо брать большую по сечению присадочную проволоку.

Отличная свариваемость изделий из низкоуглеродистых легированных сталей отмечается и при использовании покрытых электродов. Оптимальные результаты сварки обеспечивают стержни с рутиловым (Э46Т) и кальциево-фтористорутиловым (Э42А) слоем. Популярностью у профессиональных сварщиков пользуются и сварочные стержни с покрытием, в которое добавлен железный порошок.

Электрошлаковая сварка изделий из низкоуглеродистых сталей ведется с помощью флюсов АН-22, ФЦ-1, АН-8, ФЦ-7, АН-8М. Проволоку при этом подбирают с учетом состава сплава. Так, например, Ст3 сваривают при помощи проволоки Св-08Гс, Св-10Г2, СВ-08ГА, а кипящие марки стали – Св-08А.

3 Тонкости сварки среднеуглеродистых сталей

Свариваемость данных сплавов не так хороша, как низкоуглеродистых легированных сталей, так как в них углерод содержится в больших объемах. Отмечаются следующие трудности при сварке среднеуглеродистых материалов: отсутствие равной прочности основного металла и металла шва; высокий риск формирования больших трещин и закалочных непластичных структур в зоне около сварного шва; малый показатель стойкости против появления кристаллизационных дефектов.

Впрочем, все эти проблемы при сварке среднеуглеродистых сплавов разрешить не так уж и сложно. Можно применять сварочные стержни с повышенным коэффициентом наплавки, наплавочную проволоку и особые электроды для углеродистой стали с малым содержанием в них углерода. В этом случае ручная дуговая сварка проходит без затруднений. Также рекомендуется повышать свариваемость деталей посредством:

  • реализации раздельного (в несколько ванн) двухдугового сварочного процесса;
  • изменения структуры металла шва (применение особых режимов разделки кромок, обеспечивающих наименьшую степень проплавления основного металла);
  • подогрева (как сопутствующего, так и предварительного) соединяемых заготовок.

Электродуговая сварка конструкций из среднеуглеродистых легированных сталей в большинстве случаев осуществляется стержнями УОНИ (13/45 и 13/55). Они имеют особое покрытие (фтористо-кальциевое), гарантирующее увеличение стойкости металла шва к появлению трещин (кристаллизационных) и отличную прочность получаемого сварного шва.

Технология дуговой сварки среднеуглеродистых изделий предусматривает такие особенности:

  • из-за риска формирования трещин желательно производить заваривание кратеров, а также выполнять продольные перемещения электрода вместо поперечных;
  • следует накладывать неширокие валики, используя короткую электродугу;
  • рекомендуется выполнять термическую обработку шва после сварки (особенно, когда он по техническому заданию должен иметь повышенную пластичность).

Газовое соединение легированных среднеуглеродистых сплавов осуществляется незначительно науглероживающим или же стандартным пламенем. При этом используется исключительно левый способ, а мощность пламени варьируется в пределах от 75 до 100 кубических дециметров в час. После сварки можно выполнить термообработку либо проковку металла. Эти операции существенно улучшат свойства стали. Если свариваются детали, чья толщина превышает три миллиметра, технология газовой сварки предусматривает необходимость их подогрева примерно до 650 (местный нагрев) или до 350 (общий нагрев) градусов.

Отдельно скажем о том, что возможна сварка среднеуглеродистых конструкций и в условиях пониженной температуры (-30 и менее градусов). В подобных ситуациях применяется особая сварочная технология, которая требует обязательной термообработки изделий после сварки и постоянного подогрева металла (сначала его нагревают предварительно до указанных выше температур, а затем греют в течение всей операции). При соблюдении изложенных требований качество шва будет безупречным.

4 Возможна ли сварка высокоуглеродистых сплавов?

Высокое содержание углерода в таких сталях делает их непригодными для производства сварных конструкций. Но нередко при проведении ремонтных мероприятий возникает потребность в сварке высокоуглеродистых сплавов. В этих случаях их сваривают методами, которые используются для сталей со средним содержанием углерода. Единственное условие – сваривание высокоуглеродистых изделий не проводится на сквозняках и тогда, когда температура окружающего воздуха составляет менее пяти градусов по Цельсию.

Сварка сталей с большим (до 0,75 процентов) содержанием углерода по газовой методике производится на науглероженном (незначительно) или на нормальном пламени, мощностью не более 90 кубических метров ацетилена в час. При этом металл подогревается до 300 градусов (обязательное условие для получения качественного соединения). Сварка высокоуглеродистых сплавов выполняется левым способом. Это дает возможность снизить время нахождения металла в состоянии расплава и время его перегрева.

Сварка углеродистых сталей (в том числе литых): особенности

Стали с повышенным содержанием углерода обладают хорошими литейными свойствами, поэтому стальное литье обычно содержит более 0,20% углерода.

Другие материалы по теме

«Сварка углеродистых сталей»:

  • Свариваемость стали.
  • Свойства углеродистой стали
  • Химический состав углеродистых сталей
  • Сварка аустенитных сталей
  • Хромистые стали
  • Сварка сталей с титаном и титановыми сплавами

Углерод усиливает закаливаемость стали. Конструкционные стали с повышенным содержанием углерода (0,25–0,55%), как правило, подвергают закалке и отпуску, что придает им высокую твердость и износостойкость. Ценные свойства сталей с повышенным содержанием углерода широко используют для изготовления деталей машин: валов осей, зубчатых колес, звездочек, корпусов и других деталей самых различных форм.

Сварка часто является единственным способом изготовления и ремонта деталей машин, станин технологического оборудования. Однако сварка таких сталей затрудняется низкой стойкостью швов к образованию горячих трещин и вероятностью образования холодных трещин. Сложно также получить металл шва и зоны термического влияния со свойствами, равноценными свойствам основного металла.

Углерод уменьшает стойкость швов к образованию горячих трещин, усиливает вредное влияние серы и фосфора. Критическое содержание углерода в шве зависит от конструкции узла, формы шва и содержания в нем других элементов, предварительного подогрева.

Существующие способы повышения стойкости к образованию горячих трещин направлены на ограничение содержания в швах элементов, оказывающих отрицательное влияние, снижение уровня растягивающих напряжений, получение швов оптимальной формы с малой степенью их химической неоднородности.

Стали с повышенным содержанием углерода склонны к образованию малопластичных структур мартенситного типа в зоне термического влияния. Под воздействием сварочных и структурных напряжений может произойти разрушение малопластичного металла, чему способствует наличие в металле диффузионного водорода. Для предупреждения образования холодных трещин применяют способы, которые заключаются в устранении факторов, способствующих их возникновению.

Технология изготовления сварных соединений на сталях с повышенным содержанием углерода, имеющих более низкую стойкость к образованию трещин, должна предусматривать:
— применение электродов и сварочной проволоки с низким содержанием углерода;
— использование режимов сварки, конструктивных и технологических мер (разделка кромок, применение увеличенного вылета, введение дополнительной присадочной проволоки и др.), обеспечивающих минимальный переход углерода из основного металла в шов;
— введение в шов элементов (марганец, кальций, РЗМ), способствующих образованию тугоплавких или изолированных округлых сульфидных включений;
— применение оптимального порядка наложения швов, устранение излишней жесткости узлов, способов и режимов сварки, других мероприятий, обеспечивающих минимальное значение возникающих напряжений;
— выбор оптимальной формы шва и уменьшение химической неоднородности;
— снижение диффузионного водорода до минимума (использование низководородных электродов, очистка кромок и проволоки, осушка защитных газов, прокалка электродов, порошковой проволоки и флюсов);
— обеспечение замедленного охлаждения сварного соединения (применяется многослойная, двухдуговая или многодуговая сварка углеродистых сталей, наплавка отжигающего валика, используются экзотермические смеси и др.).

При сварке сталей с повышенным содержанием углерода основной металл тщательно очищают от ржавчины, масла, влаги, рыхлого слоя окалины и других загрязнений, так как они являются источниками водорода и могут вызвать образование пор и трещин. Очищать следует кромки и прилегающие к ним участки шириной не менее 10 мм. Это обеспечивает более плавный переход к основному металлу и повышенную прочность шва при переменных нагрузках.

Сборку под сварку деталей с повышенным содержанием углерода, как правило, выполняют с обязательным зазором, который зависит от толщины соединяемых деталей и должен быть на 1–2 мм больше, чем зазор при сборке элементов из хорошо свариваемых сталей. Свариваемые детали должны иметь разделку кромок при толщине металла 4 мм и более, что снижает переход углерода в шов. Учитывая высокую склонность к закалке, следует избегать прихваток малого сечения и длины или перед наложением прихваток применять местный предварительный подогрев.

Для сварки сталей с повышенным содержанием углерода (до 0,4%) можно применять те же сварочные материалы, что и для сварки низколегированных сталей, с некоторыми ограничениями. Для ручной сварки используют электроды с покрытием основного типа, обеспечивающие низкое содержание диффузионного водорода в наплавленном металле (марки УОНИ–13/45, УОНИ–13/55 и др.).

При механизированной сварке в защитном газе рекомендуют использовать проволоки марки Св–08Г2С, Св–09Г2СЦ или другие равноценные указанной, а также смесь углекислого газа и кислорода при содержании кислорода до 30% или углекислый газ. Можно применять смеси газов на основе аргона с окислительными свойствами (70…75% Ar+20…25% СО2+5% О2). Предпочтение следует отдавать проволоке диаметром 1,2 мм. При сварке сталей с повышенным содержанием углерода, прошедших термическую обработку или легированных одним или несколькими элементами (40Х, 38ХС, 45Г и др.), электродная проволока Св–08Г2С не обеспечивает требуемые механические свойства. В таких случаях для механизированной сварки применяют комплексно-легированные проволоки марок Св–08ГСМТ, Св–08ХГСМА, Св–08Х3Г2СМ и др.

Автоматическая сварка под флюсом выполняется проволоками марок Св–08А, Св–08АА, Св–08ГА в сочетании с флюсами АН–348А, ОСЦ–45. Перспективно применение флюсов АН–43 и АН–47, обладающих хорошими сварочно-технологическими свойствами и высокой стойкостью к образованию трещин.

Сварочные материалы должны соответствовать требованиям действующих стандартов и технических условий. Проволока должна быть без ржавчины и загрязнений, флюсы и электроды непосредственно перед использованием прокаливают при температурах, указанных в сопроводительной документации. Нужно применять сварочный диоксид углерода (углекислый газ); пищевой диоксид углерода допускается при условии дополнительной осушки.

Режимы сварки должны обеспечивать минимальное проплавление основного металла и оптимальную скорость охлаждения. Правильность выбора режимов сварки, обеспечивающих оптимальную скорость охлаждения, можно оценить замером твердости металла сварного соединения, которая не должна превышать 350 HV.

Сварка ответственных узлов выполняется не менее чем в два прохода, сварные швы должны иметь плавный переход к основному металлу. Частые обрывы дуги, ожоги основного металла и вывод кратера на основной металл недопустимы.

После сварки следует обеспечить замедленное охлаждение сварных соединений. Для этого сваренный узел накрывают теплоизоляционным материалом, помещают в специальный термостат и применяют послесварочный нагрев.

Сварка ответственных конструкций из сталей с повышенным содержанием углерода, узлов с жестким контуром и т. п. выполняется с предварительным подогревом. Температура предварительного подогрева обычно находится в пределах 100–400 °С. Чем выше содержание углерода и легирующих элементов и больше толщина свариваемых элементов, тем выше температура предварительного подогрева.

Оцените статью