Сварка титана и нержавеющей стали

Основные сферы применения титановых сплавов. Методы борьбы с трещинообразованием при сварке титана. Особенности и технология сварки титана. Аргонодуговая свар
Содержание

Сварка титана и нержавеющей стали

Cварка титана и его сплавов — особенности и технологии

Титан представляет собой лёгкий металл серебристо-белого цвета, который отличается высокой прочностью и отличной пластичности, жаропрочностью на уровне 600-700 ˚С, а также высокой стойкостью к воздействию агрессивных сред и коррозионным процессам.

Основными сферами применения титановых сплавов стали:

  • Машиностроение и авиация.
  • Производство оборудования, предназначенного для работы с ядерным топливом.
  • Криогенные установки.
  • Агрегаты химической промышленности.
  • Судостроение (речное и морское).

Сварка титана и его сплавов неизменно связана с определёнными химическими и физическими особенностями материалов.

Основной проблемой в этой связи становится то, что сварной шов при использовании традиционных технологий будет склонен к медленному разрушению путём образования трещин из-за высокого содержания водорода, причём явление усиливается при повышении концентрации таких веществ как кислород или азот.

  1. Сварка титана: методы борьбы с трещинообразованием
  2. Особенности и технология сварки титана
  3. Аргонодуговая сварка титана
  4. Сварка титана со сталью
  5. Лазерная сварка титана

Сварка титана: методы борьбы с трещинообразованием

  1. Соблюдение всех технологических процедур, предусмотренных нормативными документами, для того чтобы предотвратить попадание в зону ведения сварки вредных газов или паров воды. С этой целью предусмотрено выполнение тщательной подготовки рабочего поля, качественная зачистка детали и сварочного материала, а также обеспечивается качественная защита металла.
  2. Проведение процедуры снятия с заготовки остаточного сварочного напряжения.
  3. Для максимального снижения эффекта трещинообразования рекомендуется с (α + β)-сплавами работать в сравнительно мягком режиме (при скорости охлаждения поверхности 10-20 ˚С/с), в то время как α- и псевдo α-сплавы – в жёстком.
  4. В присадочном и основном свариваемом материале необходимо снизить процентное содержание газов: водорода до уровня менее 0,008%, азота – менее 0,04%, а кислорода – менее 0,1-0,12.
  5. Защита металла от насыщения газами.

Особенности и технология сварки титана

Основными способами сварки титана, получившими наибольшее распространение стали:

  • Контрактная сварка.
  • Дуговая сварка в инертных газах с использованием плавящегося или неплавящегося электрода.
  • Электроннолучевая технология.
  • Электрошлаковая сварка.

Аргонодуговая сварка титана

Чаще всего в качестве инертного газа используется аргон высшего сорта (реже гелий или его смесь с аргоном).

При этом свариваемые детали для защиты металла от насыщения газами могут быть:

  • Помещены в герметичный бокс с контролируемыми параметрами среды (такая сварка титана используется только для особо ответственных деталей и соединений).
  • В воздухе, но с использованием специализированных камер, которые защищают зону выполнения работ (с обратной стороны детали в процессе работ подаётся защитный газ).
  • На воздухе одновременно с подачей через специальные удлиненные насадки из сопел инертного газа, что позволяет обеспечить достаточную площадь защитной зоны, одновременно с подачей газа на обратную сторону свариваемой детали.

В качестве присадки используется проволока для сварки титана (она необходима при работе с деталями толщиной от 1,5 мм). При этом альфированный насыщенный кислородом слой обязательно необходимо счистить и с основного металла и с присадочного материала. Кроме того, проволока подвергается четырёхчасовому вакуумному обжигу при температуре 900-1000 ˚С.

Сваривать с применением этой методики можно детали толщиной до 15 мм на постоянном токе при прямой полярности.

Сварка титана со сталью

Соединение стальных и титановых сварных конструкций позволяет существенно снизить вес изделий, что часто имеет принципиально важное значение при проектировании. Но в то же время эти материалы существенно отличаются по своим химическим свойствам и физическим особенностям, поэтому в последние годы ведутся всё более интенсивные разработки технологий и методик ведения сварочных работ для получения соединений высокой надёжности и долговечности. Особенно много сложностей при необходимости выполнения сварки титана с нержавейкой.

Наиболее часто используется:

  • Сварка титана взрывом с использованием промежуточных прокладок из никеля, серебра, меди, ванадия, сплавов тугоплавких металлов.
  • Диффузионная сварка, позволяющая получить механически прочные соединения, но прочность в зоне шва будет всё же ниже, в сравнении с основным материалом.
  • Клинопрессовая сварка в аргоне с прокладкой из меди или алюминия обеспечивает соединение высокого качества.
  • Ультразвуковая и контактная сварка (лучшие результаты могут быть получены при использовании в качестве материала для прослойки серебра и ниобия соответственно).
  • Сварка плавлением получила наибольшее распространение (в частности широко используется аргонодуговая и электроннолучевая сварка титана).

Лазерная сварка титана

Множество проблемных моментов, связанных с процессом сварки титановых сплавов, можно решить с использованием концентрированных источников энергии – лазерных лучей. При этом для получения качественного сварочного соединения необходимо проведение тщательной подготовки кромок свариваемых элементов обработкой методом фрезеровки или точения.

Для того чтобы удалить газонасыщенную плёнку с поверхности – пескоструйную обработку с дальнейшим травлением химическими веществами, осветлением поверхности и её промывкой. При строгом соблюдении допустимых параметров зазора между кромками будет обеспечено формирование шва высокого качества.

Технология сварки титана и его сплавов

Температура плавления титана 1668°С. Имеется около 20 сплавов

Марка

Свариваемость

Технологические особенности сварки

BT1-00, ВТ1-0, ОТ4-0, ОТ4-1

Зачистка кромок
Режим с минимальной погонной энергией

ВТ6, ВТ3-1, ВТ9, ВТ14, ВТ16, ВТ20

Мягкий режим с малыми скоростями охлаждения

Режим с высокой скоростью охлаждения

Трудности при сварке

Высокая химическая активность металла при высокой температуре, особенно в расплавленном состоянии. Поэтому необходима надежная защита от воздуха не только сварочной ванны, но и остывающих участков шва и околошовной зоны, пока их температура не снизится до 250-300°С. Требуется защита и обратной стороны шва даже в том случае, если металл не расплавлялся, а только нагревался выше этой температуры.

Склонность титановых сплавов к росту зерна металла в нагретых до высоких температур участках. Это затрудняет выбор режима сварки — такого, при котором нагрев околошовной зоны был бы минимальным.

Высокая температура плавления титана требует применять концентрированные источники нагрева. Низкая теплопроводность титана приводит к снижению эффективности источника нагрева по сравнению со сваркой сталей.

Поры и холодные трещины сварных соединений титана возникают из-за вредных газовых примесей и водорода. Поэтому необходимо обеспечить чистоту основного металла и сварочных материалов, в том числе присадочной проволоки.

Вблизи точки плавления поверхностное натяжение титана в 1,5 раза выше, чем алюминия, что позволяет формировать корень шва на весу. Однако расплавленный металл обладает низкой вязкостью, и при некачественной сборке деталей могут образоваться прожоги.

ГАЗОВАЯ ЗАЩИТА СВАРОЧНОЙ ВАННЫ

Существуют три варианта защиты:

  • струйная с использованием специальных приспособлений
  • местная в герметичных камерах малого объема
  • общая в камерах с контролируемой атмосферой (ВКС-1, ВУАС-1, УСБ-1)

При аргонодуговой сварке титана W-электродом следует применять сварочные горелки с возможно большим газовым соплом, создающим обширную зону защиты. Поток аргона через сопло должен быть ламинарным, что достигается газовыми линзами, установленными внутри сопла. Расход газа в зависимости от режима сварки колеблется от 8 до 20 л/мин. Если сопло горелки не гарантирует надежной защиты, то его дополняют специальной насадкой, коробом или другим приспособлением. Дополнительные защитные устройства изготавливают из нержавеющей стали. Внутри имеются рассекатели и газовые линзы. Насадка, прикрепляемая к газовой горелке для защиты кристаллизующейся сварочной ванны, должна иметь ширину 40-50 мм и длину от 60-120 мм в зависимости от режима сварки. Для сварки трубчатых конструкций, кольцевых поворотных и неповоротных стыков применяют местные или малогабаритные защитные камеры.

1- дополнительная насадка; 2 — газовая линза

Качество защиты определяют по внешнему виду металла шва. Серебристая или соломенного цвета поверхность шва свидетельствует о хорошей защите. Желто-голубой цвет указывает на нарушение защиты, хотя в отдельных случаях такие швы считаются допустимыми. Темно-синий или синевато-серый цвет с пятнами серого налета характеризует низкое качество шва.

ГАЗОВАЯ ЗАЩИТА НАГРЕТЫХ УЧАСТКОВ

Специальная подкладка для защиты корня шва, нагретого до 250-300°С

Защитные приспособления из нержавеющей стали для тавровых и угловых соединений

ЗАЩИТА ШВА ТРУБОПРОВОДА

Защита при приварке фланца

Защита при сварке секционных отводов

Подготовка к сварке

Резку титана и подготовку кромок под сварку выполняют механическим способом. Для толстостенных изделий пригодны и газотермические способы, но с обязательной последующей механической обработкой кромок на глубину не менее 3-5 мм и на ширину 15-20 мм. После этого кромки зачищают металлическими щетками, шабером и т.п. и обезжиривают. Конструкции, которые перед сваркой испытывали нагрев — при вальцовке, ковке, штамповке и т.д. — должны быть подвергнуты дробеструйной или гидропескоструйной очистке и затем химической обработке: рыхлению оксидной пленки, травлению и осветлению.

Режим химической обработки титана и его сплавов

Раствор

Длительность обработки, мин

Назначение

Состав

Рыхление оксидной пленки

Нитрит натрия 150-200 г/л Углекислый натрий 500-700 г/л

Плавиковая кислота 220-300 мл/л Азотная кислота 480-550 мл/л

Азотная кислота 600-750 мл/л Плавиковая кислота 85-100 мл/л

После этого свариваемые кромки промывают бензином на ширину 20 мм и протирают этиловым спиртом или ацетоном.

Сварочную проволоку предварительно подвергают вакуумному отжигу и обезжиривают ацетоном или спиртом. Окисленную часть удаляют кусачками. Поверхности, подготовленные к сварке, нельзя трогать незащищенными руками.

Выбор параметров режима

Сварку титана и его сплавов рекомендуется вести в отдельном помещении. Температура воздуха в нем должна быть не ниже + 15°С, а скорость его движения — не более 0,5 м/с.

Сварку выполняют на постоянном токе прямой полярности непрерывно горящей или импульсной дугой. Используют аргон высшего сорта и гелий высокой чистоты.

Сварочный ток выбирают в зависимости от толщины свариваемого изделия и диаметра W-электрода.

Техника сварки

Основное пространственное положение шва — нижнее. Ручную сварку ведут без колебательных движений горелкой, короткой дугой, «углом вперед» Проволоку подают непрерывно, угол между ней и горелкой поддерживают около 90°.

Как правило, в качестве присадка используют проволоку того же химического состава, что и основной металл (BTl-00св, ВТ20-1св и т.д.). Для большинства сплавов годится проволока марок СПТ-2 и СП-15.

Сварка титана

  • Авторизуйтесь для ответа в теме

#701 Alex_D

Кронштейн из титана приваривается к газоходу, потом прикручивается к стали. То что вы хотите приварить титан к стали — не стоит потраченного времени, т.к. технология будет явно сложная и дорогая с сомнительным результатом. Инженера, который такое запроектировал — на кол.

А резьбовое или фланцевое соединение не пойдет? Или муфту какую с обжатием.

Сообщение отредактировал Alex_D: 15 Ноябрь 2020 17:57

  • Наверх
  • Вставить ник

#702 Vanguard

  • Участник
  • Cообщений: 1 971
    • Город: Красноярск

    Alex_D , я вот это, тоже не из пальца высосал

    Титан удовлетворительно сваривается с очень ограничен­ным количеством металлов: цирконием, ниобием, танталом, ванадием, молибденом, гафнием. Наиболее пластичные соединения удается получить при сварке титана с цирконием, ниобием и танталом.

    Есть одно но, из всего выше перечисленного, адекватно подружить со сталью с помощью сварки, можно только ванадий.

    болты в газоход вряд-ли кто то будет закручивать.

    • Наверх
    • Вставить ник

    #703 Точмаш 23

    При дуговой сварке титана со сталью невозможно полу­чить сварной шов с содержанием железа в пр еделах раство­римости его в титане. Поэтому при непосредственном со­единении титана со сталью методом сварки плавлением швы чрезвычайно хрупки, в них образуются трещины. Задача еще больше усложняется при сварке титана с хромо-нике­левыми сталями аустенитного класса. В этом случае обра­зуются сложные интерметаллические соединения титана с железом, хромом и никелем, которые еще в большей степени, чем при сварке титана с углеродистой сталью, делают шов хрупким.

    Избежать перемешивания свариваемых металлов можно двумя путями: сваркой — пайкой, когд а од ин из металлов (более легкоплавкий) растекается по соответствующему по­крытию, нанесенному на другой металл (при этом непосред­ственное сплавление металлов не происходит, а образуется сварно-паянное соединение); ступенчатым методом с при­менением промежуточных металлов-вставок

    Титан удовлетворительно сваривается с очень ограничен­ным количеством металлов: цирконием, ниобием, танталом, ванадием, молибденом, гафнием. Наиболее пластичные со­единения удается получить при сварке титана с цирконием, ниобием и танталом

    С. М. Гуревич и В. Н. Замков нашли способ создания комбинированной вставки из двух сваривающихся между собой металлов — тантала или ниобия и бронзы [12]. Так как тантал хорошо сваривается с титаном, а бронза со ста­лями различных классов, то такая комбинированная вставка является надежным связывающим звеном при соединении этих разнород­ных металлов.

    В результате проведен­ных опытов была установ­лена принципиальная воз­можность сварки техниче­ского ванадия с титаном и сталью, в том числе аусте — нитного класса. При сварке неплавящимся электродом в среде аргона швы форми­ровались хорошо, не имели дефектов. Структура свар­ного соединения ванадие­вого сплава со сталью Х18Н10Т приведена на рис. 29. Однако во многих случаях, вследствие неиз­бежного образования е-фазы в швах в широком интервале концентраций ванадия сварные соединения ванадий — сталь обладают низкой пластичностью. Так, например, угол загиба сварного соединения ванадия со сталью 20 не пре­восходит 30—35°. Это приводит к снижению пластических свойств и соединения титан — ванадий — сталь.

    Одним из путей решения проблемы соединения титана со сталью является применение при сварке переходников, изготовленных из биметаллических полос с соотношени­ем толщин слоев 1:1. Технология прокатки таких полос разработана в УкрНИИМЕТ [47] и других организа­циях.

    Наиболее перспективным способом получения биметалла титан — сталь является способ горячей прокатки в ваку­уме при соответствующем подборе величин обжатий и тем­ператур, если заготовки под прокатку обладают прочным соединением слоев по всей площади соединения. Такая од­нородность заготовок достигается с помощью сварки взры­вом, а в ряде случаев —• использованием металла промежу­точных слоев, например, ванадия. Биметалл с подслоем ванадия имеет более стабильные свойства в исходном состоянии, чем биметалл без подслоя; кроме того ва­надий способствует получению более вязкой граничной зоны.https://msd.com.ua/s. tana-so-stalyu/

    • Наверх
    • Вставить ник

    #704 Alex_D

    Alex_D , я вот это, тоже не из пальца высосал

    Ну по крайней мере пришли к общему мнению, что ванадий подходит)

    При дуговой сварке титана со сталью невозможно полу­чить сварной шов с содержанием железа в пр еделах раство­римости его в титане. Поэтому при непосредственном со­единении титана со сталью методом сварки плавлением швы чрезвычайно хрупки, в них образуются трещины. Задача еще больше усложняется при сварке титана с хромо-нике­левыми сталями аустенитного класса. В этом случае обра­зуются сложные интерметаллические соединения титана с железом, хромом и никелем, которые еще в большей степени, чем при сварке титана с углеродистой сталью, делают шов хрупким.

    Избежать перемешивания свариваемых металлов можно двумя путями: сваркой — пайкой, когд а од ин из металлов (более легкоплавкий) растекается по соответствующему по­крытию, нанесенному на другой металл (при этом непосред­ственное сплавление металлов не происходит, а образуется сварно-паянное соединение); ступенчатым методом с при­менением промежуточных металлов-вставок

    Титан удовлетворительно сваривается с очень ограничен­ным количеством металлов: цирконием, ниобием, танталом, ванадием, молибденом, гафнием. Наиболее пластичные со­единения удается получить при сварке титана с цирконием, ниобием и танталом

    С. М. Гуревич и В. Н. Замков нашли способ создания комбинированной вставки из двух сваривающихся между собой металлов — тантала или ниобия и бронзы [12]. Так как тантал хорошо сваривается с титаном, а бронза со ста­лями различных классов, то такая комбинированная вставка является надежным связывающим звеном при соединении этих разнород­ных металлов.

    В результате проведен­ных опытов была установ­лена принципиальная воз­можность сварки техниче­ского ванадия с титаном и сталью, в том числе аусте — нитного класса. При сварке неплавящимся электродом в среде аргона швы форми­ровались хорошо, не имели дефектов. Структура свар­ного соединения ванадие­вого сплава со сталью Х18Н10Т приведена на рис. 29. Однако во многих случаях, вследствие неиз­бежного образования е-фазы в швах в широком интервале концентраций ванадия сварные соединения ванадий — сталь обладают низкой пластичностью. Так, например, угол загиба сварного соединения ванадия со сталью 20 не пре­восходит 30—35°. Это приводит к снижению пластических свойств и соединения титан — ванадий — сталь.

    Одним из путей решения проблемы соединения титана со сталью является применение при сварке переходников, изготовленных из биметаллических полос с соотношени­ем толщин слоев 1:1. Технология прокатки таких полос разработана в УкрНИИМЕТ [47] и других организа­циях.

    Сварка титана и титановых сплавов. Как и чем варить титан и его сплавы?

    Содержание

    1. Особенности сварки титана и его сплавов
    2. Какие способы используют для сварки титана?
      • Подготовка титана под сварку
    3. Ручная дуговая сварка титана и титановых сплавов
      • Технология, техника и режимы сварки
    4. Видео: аргонодуговая сварка труб из титана
    5. Автоматическая сварка титана и его сплавов
      • Режимы автоматической сварки титана в аргоне
      • Режимы дуговой сварки титана под флюсом
    6. Электрошлаковая сварка титановых сплавов
    7. Контактная сварка титана
      • Режимы стыковой сварки титана
      • Режимы точечной сварки титана
      • Режимы шовной (роликовой) сварки титана
      • Конденсаторная сварка титановых труб

    Особенности сварки титана и сплавов на его основе

    Сварка титана и титановых сплавов всё чаще применяется в промышленности из-за их физико-химических свойств. Температура плавления титана составляет, по разным данным, 1470-1825°C. Титан способен сохранять высокую прочность до температуры 500°C, а также высокую коррозионную стойкость во многих агрессивных средах.

    Основное условие для качественной сварки титана — это необходимость надёжной защиты зоны сварки и обратной стороны шва от вредного воздействия атмосферного воздуха. При этом, защищать нужно не только сварочную ванну, но и те участки металла, температура нагрева которых превышает 400°C. Кроме этого, необходимо обеспечить минимальный по времени нагрев свариваемых кромок.

    Дополнительными трудностями при сварке титана являются его склонность к увеличению размера зерна при высоких температурах (выше 880°C) и к образованию пор.

    Титановые сплавы склонны к закалке, в зависимости от легирующего элемента. Такие элементы как Cr, Fe, Mn, W, Mo, V, входящие в состав сплава, снижают его пластичность. Так, при температуре 250°C начинается интенсивное поглощение водорода, при 400°C кислорода и при 600°C азота.

    Прочность сварного соединения титана и титановых сплавов, в зависимости от марки сплава и способа сварки плавлением составляет 0,6-0,8 прочности основного металла. Сварные соединения из титановых сплавов марок ВТ5, ОТ4, ВТ4 и др. не последующей термической обработке не подвергают. В отдельных случаях допускается выполнять отжиг для снятия напряжений.

    Какие способы используют для сварки титана и его сплавов?

    Титан и его сплавы свариваются плавлением только дуговой (ручной или автоматической) сваркой. Наибольшее распространение получила сварка в среде аргона или гелия под некислородным флюсом марки АН-11. Для изделий большой толщины применяют электрошлаковую сварку под флюсом марки АН-Т2. Кроме того, титан хорошо сваривается контактной сваркой в среде защитных газов или без неё. При сварке плавлением необходимо обеспечивать газовую защиту оборотной стороны шва в среде аргона. В связи с этим, рекомендуется применять сварку на подкладках или производить сварку встык.

    Подготовка титана и его сплавов под сварку

    Качество титанового сварного соединения во многом будет зависеть от технологической подготовки сварных кромок и сварной проволоки под сварку. У деталей из титана и титановых сплавов поверхность покрыта оксидно-нитридными плёнками, появляющимися после горячей обработки полуфабрикатов, из которых эти детали изготовлены.

    Удалить эту плёнку можно при помощи механической обработки и следующего за ней травления в смеси 350мл соляной кислоты, 50г фторида натрия и 650мл воды. Время травления составляет 5-10мин, температура травления 60°C. Перед сваркой необходимо зачистить металлическими щётками сами сварные кромки, а также участки, на расстоянии 15-20мм от стыка до металлического блеска и обезжирить.

    Ручная дуговая сварка титана и титановых сплавов

    Технология, техника и режимы сварки

    Ручную дуговую сварку титана вольфрамовым электродом выполняют постоянным током прямой полярности. При сварке используют специальные приспособления, с помощью которых обеспечивается защита зоны сварки, околошовной зоны, корня шва, а также остывающих участков шва. Такими приспособлениями могут быть, в частности, удлинённые насадки с отверстиями, защитные козырьки и др.

    Защиту корня шва можно обеспечить, если плотно поджать сварные кромки к медной или стальной подкладке. Можно, также, использовать подкладку с отверстиями, или изготовленную из пористого материала и подавать через неё защитный газ. При сварке труб из титана защитный газ пропускают внутрь трубы.

    Если толщина свариваемого металла не превышает 3,0мм, то при их сборке допускается зазор от 0,5мм до 1,5мм. В этом случае сварку производят без использования присадочного материала. Если используют присадочный материал, по составу сходный со свариваемым металлом, то диаметр электрода принимается равным толщине основного металла.

    Приблизительные режимы для ручной дуговой сварки титана и его сплавов вольфрамовым электродом диаметром 1,5-2мм и присадочной проволокой диаметром 2мм составляют: сила тока 90-100А для сварки металла, толщиной 2мм и 120-140А для металла толщиной 3-4мм. Сварку производят постоянным током прямой полярности, как уже говорилось выше.

    Ручную сварку титана проводят без колебательных движений, на короткой дуге. При этом наклон электрода должен быть в противоположную сторону от направления его движения, т.е. сварка выполняется «углом вперёд». Если используется присадочный материал, то рекомендуемый угол между электродом и присадочным прутком составляет 90°. Подача присадочной проволоки осуществляется без перерыва.

    После окончания процесса сварки и гашения электрической дуги, необходимо продолжать подачу защитного газа в течение 0,5-1мин, пока металл не остынет до температуры ниже 400°C. Этот приём помогает предотвратить окисление металла сварного шва и зоны термического влияния. Окисленный шов хорошо различается по цвету. Качественный шов окрашен в светлый, жёлтый или соломенный цвет. Некачественный шов имеет серый или чёрный цвет и наличие синевы в переходной зоне. На рисунке справа показаны неокисленный, качественный шов (сверху) и шов окисленный (снизу).

    Видео: аргонодуговая сварка труб из титана

    В представленных ниже коротких видеороликах подробно показан процесс сварки труб из титана в среде аргона с использованием специальных фартуков для защиты зоны сварки:

    Автоматическая сварка титана и его сплавов

    Автоматическая сварка титана и титановых сплавов выполняется вольфрамовым электродом. Выходные отверстия сварочной горелки должны быть не менее 12-15мм. При сварке неплавящимся электродом рекомендуются постоянный ток прямой полярности.

    В связи с высокой активностью титана, зажигание и гашение горелки необходимо производить вне свариваемого изделия — на специальных планках. Также, как и при ручной сварки, после гашения дуги защитный газ необходимо подавать ещё в течение, примерно 1мин, чтобы предотвратить окислении шва и переходной зоны. Рекомендуемые режимы сварки титана для автоматической сварки в защитных газах и автоматической сварки под флюсом представлены в таблицах ниже:

    Структурно-фазовое состояние и механические свойства сварных соединений при лазерной сварке титана и нержавеющей стали Текст научной статьи по специальности « Технологии материалов»

    Аннотация научной статьи по технологиям материалов, автор научной работы — Гнюсов Сергей Федорович, Оришич Анатолий Митрофанович

    Исследованы сварные соединения «титан-титан» и «титан-сталь 12Х18Н10Т», полученные с использованием лазерного излучения. Структура сварного шва титанового сплава ВТ10 имеет два характерных морфологических признака: β-фазу с крупными полиэдрическими зернами и α-фазу с пластинчатым характером внутризеренной структуры. Разрушение материала происходит по основному металлу и носит вязкий характер. При сварке титанового сплава с аустенитной нержавеющей сталью через медную прослойку происходит образование со стороны титанового сплава промежуточного слоя на основе интерметаллидных фаз толщиной 100…150 мкм.

    Похожие темы научных работ по технологиям материалов , автор научной работы — Гнюсов Сергей Федорович, Оришич Анатолий Митрофанович

    The authors have studied the weld joints «titanium-titanium» and «titanium-12H18N10Т steel» obtained by using laser radiation. The structure of the weld joint of titanium alloy VT1-0 has two typical morphological features: β-phase with coarse polyhedral grains and α-phase with laminar nature of intragranular structure. The material ruptures by the main metal and this rapture is of viscous character. When welding titanium alloy with austenitic stainless steels through the copper interlayer the intermediate layer based on intermetallic phases with the thickness 100…150 µm is formed on the side of titanium alloy.

    Текст научной работы на тему «Структурно-фазовое состояние и механические свойства сварных соединений при лазерной сварке титана и нержавеющей стали»

    СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ ПРИ ЛАЗЕРНОЙ СВАРКЕ ТИТАНА И НЕРЖАВЕЮЩЕЙ СТАЛИ

    С.Ф. Плюсов, А.М. Оришич*

    Томский политехнический университет *Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, г. Новосибирск

    Исследованы сварные соединения «титан — титан» и «титан — сталь 12Х18Н10Т», полученные с использованием лазерного излучения. Структура сварного шва титанового сплава ВТ1-0 имеет два характерных морфологических признака: p-фазу с крупными полиэдрическими зернами и a-фазу спластинчатым характером внутризеренной структуры. Разрушение материала происходит по основному металлу и носит вязкий характер. При сварке титанового сплава с аустенитной нержавеющей сталью через медную прослойку происходит образование со стороны титанового сплава промежуточного слоя на основе интерметаллидных фаз толщиной 100. 150 мкм.

    Лазерная сварка, аустенитная нержавеющая сталь, титановый сплав, микроструктура. Key words:

    Laser welding, austenitic stainless steels, titanium alloys, microstructure.

    Титан, титановые сплавы и аустенитные нержавеющие стали являются важными термостойкими материалами, использующимися в космическом, авиационном, нефтехимическом машиностроении, а титан и титановые сплавы дополнительно используются ив медицине [1-3]. Сварка данных материалов является неотъемлемым процессом при производстве деталей и механизмов, в том числе и биметаллических (титановый сплав — нержавеющая сталь), что делает актуальным исследование структуры и свойств данных соединений для улучшения их качества. В большинстве случаев при получении биметаллических сварных соединений используются специальные технологические приемы, исключающие или существенно уменьшающие взаимодействие свариваемых материалов. Это, например, использование эффекта сверхпластичности при получении биметаллического инструмента [4], введение промежуточных вставок между свариваемыми материалами [5, 6], либо технологии сварки [7]. Успешному решению этой проблемы может способствовать развитие новых технологий, связанных с использованием высококонцентрированных лучевых источников сварочного нагрева (электронный и лазерный лучи) [8-10].

    Особенностью лазерной обработки материалов является локальный характер теплового воздействия, минимальная термическая деформация, широкий диапазон регулирования энергетических характеристик лазерного луча, обеспечивающих жесткий термический режим с высокими скоростями нагрева и охлаждения, возможность получения качественных сварных швов и высокопрочных поверхностных слоев.

    Целью данной работы явилось исследование структуры, фазового состава и свойств сварных соединений «титан — титан» и «титан — медь — сталь

    12Х18Н10Т» полученных с использованием лучей лазера.

    Материалы и методы исследования

    В качестве исходных образцов для лазерной сварки использовали пластины размером 100×100 мм толщиной 2 мм из титанового сплава ВТ1-0 и нержавеющей стали 12Х18Н10Т При формировании сварных соединений «титан — сталь 12Х18Н10Т» в качестве промежуточной вставки использовали медную пластину толщиной 1 мм.

    Лазерную сварку исследуемых материалов в стык осуществляли с помощью непрерывного электроразрядного СО2-лазера с максимальной мощностью излучения 8 кВт и площадью пучка 12 мкм2 [11]. Излучение фокусировалось на нижнюю поверхность свариваемых пластин ZnSe линзой с фокусным расстоянием 254 мм. В качестве изолирующего газа использовался гелий с расходом 50 л/мин, который подавался как в верхнюю часть сварного соединения, так и в корень шва. Качество газовой экранировки определялось визуально по характерному белому свету полученного шва. Мощность излучения (3 кВт) и скорость сварки (1 м/мин) подбирались до полного проплавления металла.

    Способ приготовления микрошлифов традиционный — механическое шлифование и механическое полирование на алмазных пастах различной дисперсности. Химическое травление производилось травителем: HF (1 об. часть) + HNO3 (2 об. части) + H2O (4 об. части); время травления -10. 15 с, температура — 20 °С.

    Структуру сварных швов (на продольных и поперечных микрошлифах) исследовали с помощью оптического микроскопа (ОМ) Olympus GX 51, снабженного анализатором SIAMS 700, растрового электронного микроскопа (РЭМ) Philips SEM 515, снабженного микроанализатором EDAX ECON IV.

    Фрактографию поверхностей разрушения после испытаний образцов со сварными швами на квази-статическое растяжение исследовали методами растровой электронной микроскопии.

    Исследование фазового состава исходных образцов и сварных швом проводили методом рентгеноструктурного анализа (РСА) на дифрактометре 8Ытаёги ХЯС 6000 с фильтрованным С%а-из-лучением в режиме сканирования в интервале углов 20 от 30 до 100° с шагом 0,02°. При проведении качественного фазового анализа использовались хорошо известные картотеки. Для количественного фазового анализа использовали значения интегральной интенсивности дифракционных линий [12]. Из уширения дифракционных максимумов согласно [13] были получены размеры кристаллитов (областей когерентного рассеяния) и микроискажения е кристаллических решеток основных фаз материалов. Истинное физическое уширение рентгеновских линий получали сравнением ширины рефлексов исследуемых кристаллитов с шириной рефлексов от эталонного образца, в качестве которого был взят крупнокристаллический а-кварц.

    Распределение микротвердости На в поперечном сечении по отношению к оси шва измеряли на приборе ПМТ-3 (ГОСТ 9450-76) с шагом по глубине 100 мкм при нагрузке 0,981 Н. Измерения производили в виде двух параллельных дорожек со смещением уколов индентора между дорожками 50 мкм. Расстояние между дорожками было 200 мкм. Это позволило построить график изменения микротвердости по толщине с шагом 50 мкм.

    Результаты и их обсуждение

    Сварное соединение «титан — титан». На основе анализа микроструктуры (ОМ, рис. 1, а) и РСА титановый сплав ВТ1-0 находится в однофазном состоянии. а-фаза имеет гексагональную плотноу-пакованную кристаллическую решетку с параме-

    трами а=0,29761 нм и с=0,47367 нм. Средний размер зерна а-фазы равен 11,2 мкм, размер кристаллитов 20 нм, а уровень микроискажений кристаллической решетки 1,5-103.

    В процессе сварки при охлаждении из высокотемпературной ^-области структура сварного шва имеет два характерных морфологических признака: крупные полиэдрические зерна «превращенной» ^-фазы со средним размером 87 мкм и пластинчатый характер внутризеренной структуры а-фазы (рис. 1, б).

    Данные структурные изменения приводят к увеличению средней величины микротвердости в области сварного шва с 1450 до 1816 МПа с одновременным увеличением дисперсии распределения 127 МПа (рис. 2, а). Разрушение материала при испытании образцов со сварным швом на квази-статическое растяжение происходит по основному металлу и носит вязкий характер (рис. 3, а). Прочность на растяжение (500 МПа) и относительное удлинение (25 %) соответствуют исходному материалу ВТ1-0 [1].

    Сварное соединение «титан — медь — сталь 12Х18Н10Т». На рис. 4 представлена микроструктура различных участков сварного шва «титан -медь — сталь 12Х18Н10Т». В центральной части наплавленного металла его микроструктура представляет композиционный материал, состоящий из медной матрицы и пластинчатых выделений (рис. 4, а). В корневой части сварного соединения упрочняющие частицы представлены в двух морфологических формах: пластинчатые и округлые выделения (рис. 4, б). Данный композиционный материал имеет повышенный уровень микротвердости по сравнению с титановым сплавом и сталью 12Х18Н10Т (рис. 2, б). Значительный разброс в значениях микротвердости в области сварного шва связан, по-видимому, с резким различием в твердостях структурных элементов составляющих композиционный материала.

    Оцените статью