В какой группе находится алюминий?

Электронная конфигурация и степень окисления алюминия. Природные соединения. Получение и химические свойства алюминия. Наглядные реакции.
Содержание

В какой группе находится алюминий?

Алюминий

Алюминий является самым распространенным металлом в земной коре. Свойства алюминия позволяют активно применять в составе металлоконструкций: он легкий, мягкий, поддается штамповке, обладает высокой антикоррозийной устойчивостью.

Для алюминия характерна высокая химическая активность, отличается также высокой электро- и теплопроводностью.

Основное и возбужденное состояние

При переходе атома алюминия в возбужденное состояние 2 электрона s-подуровня распариваются, и один электрон переходит на p-подуровень.

Природные соединения

В природе алюминий встречается в виде минералов:

  • Al2O3 — корунд
  • 3BeO*Al2O3*6SiO2 — берилл (аквамарин — примесь Fe и изумруд — примесь Cr2O3)
  • Al2O3*Cr2O3 — красный рубин
  • Al2O3 с примесью Fe +2 /Fe +3 /Ti
  • Al2O3*H2O — боксит

Получение

Алюминий получают путем электролиза расплава Al2O3 в криолите (Na3[AlF6]). Галлий, индий и таллий получают схожим образом — методом электролиза их оксидов и солей.

Химические свойства
  • Реакции с неметаллами

При комнатной температуре реагирует с галогенами (кроме фтора) и кислородом, покрываясь при этом оксидной пленкой.

Al + Br2 → AlBr3 (бромид алюминия)

При нагревании алюминий вступает в реакции с фтором, серой, азотом и углеродом.

Al + F2 → (t) AlF3 (фторид алюминия)

Al + S → (t) Al2S3 (сульфид алюминия)

Al + N2 → (t) AlN (нитрид алюминия)

Al + C → (t) Al4C3 (карбид алюминия)

Алюминий проявляет амфотерные свойства (греч. ἀμφότεροι — двойственный), вступает в реакции как с кислотами, так и с основаниями.

Al + NaOH + H2O → Na[Al(OH)4] + H2↑ (тетрагидроксоалюминат натрия; поскольку алюминий дан в чистом виде — выделяется водород)

При прокаливании комплексные соли не образуются, так вода испаряется — вместо них образуются (в рамках ЕГЭ) средние соли — алюминаты (академически — сложные окиселы):

Реакция с водой

При комнатной температуре не идет из-за образования оксидной пленки — Al2O3 — на воздухе. Если разрушить оксидную пленку нагреванием раствора щелочи или амальгамированием (покрытием металла слоем ртути) — реакция идет.

Алюминотермия (лат. Aluminium + греч. therme — тепло) — способ получения металлов и неметаллов, заключающийся в восстановлении их оксидов алюминием. Температуры при этом процессе могут достигать 2400°C.

С помощью алюминотермии получают Fe, Cr, Mn, Ca, Ti, V, W.

Оксид алюминия

Оксид алюминия получают в ходе взаимодействия с кислородом — на воздухе алюминий покрывается оксидной пленкой. При нагревании гидроксид алюминия, как нерастворимое основание, легко разлагается на оксид и воду.

Проявляет амфотерные свойства: реагирует и с кислотами, и с основаниями.

Al2O3 + NaOH + H2O → Na[Al(OH)4] (тетрагидроксоалюминат натрия)

Гидроксид алюминия

Гидроксид алюминия получают в ходе реакций обмена между растворимыми солями алюминия и щелочами. В результате гидролиза солей алюминия часто выпадает белый осадок — гидроксид алюминия.

Проявляет амфотерные свойства. Реагирует и с кислотами, и с основаниями. Вследствие нерастворимости гидроксид алюминия не реагирует с солями.

Al(OH)3 + LiOH → Li[Al(OH)4] (при избытке щелочи будет верным написание — Li3[Al(OH)6] — гексагидроксоалюминат лития)

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Алюминий

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

АЛЮМИНИЙ — дороги, которые он выбирает

Металл алюминий — мечта многих производств. Коррозия ему не страшна, он прекрасно проводит электрический ток, цветной металл легче железа почти в три раза, отличается прочностью. Не магнитится, легко образует сплавы с металлами.

Второе имя алюминия — крылатый металл. Появление чистого алюминия открыло человеку дорогу в небо.

Как искали неизвестный алюминий

История открытия алюминия вяло тянулась с античности. Плиний пишет о квасцах (Alumen). Но под квасцами понимались разные вещества. Это антимоний, тартар, щелочь, гипс.

Лавуазье высказал здравую мысль: алюмина является окислом неизвестного металла. Тут химики оживились и стали пытаться «выцепить» незнакомца. Попыток было много, но только в 1825 году датчанин Эрстед извлек-таки неизвестный металл, напоминающий олово. Назвали его алюминием.

Свойства крылатого металла

Алюминий (Aluminium) имеет несчастливый 13 номер в периодической таблице Менделеева. Однако на счастливую судьбу металла это не повлияло.

Этот легкий серебристый металл послушно поддается механической обработке и литью, имеет большую тягучесть.

Редкая способность — быстро образовывать окисные пленки на поверхности чистого металла. Но эти пленки не слишком хорошо защищают от коррозии. Надежнее химическое и электрохимическое оксидирование. Формула оксидной пленки А12Оз.

Химические и физические характеристики алюминия:

  • плотность 2,7 г/см3;
  • температура плавления 660°С;
  • кипит цветной металл при температуре 2518°С;
  • строение кристаллической решетки гранецентрированное, кубическое;
  • степени окисления 0; +3.

С помощью металлического алюминия (его взаимодействия с оксидами металлов) получают трудновосстанавливаемые металлы. Этот метод называется алюминотермия.

Алюминий имеет один стабильный изотоп, 27Al.

Неправда, но хорошо придумано

В печатных изданиях, а сейчас и в интернете гуляет история о крестьянине, который вел «крамольные беседы о полете на Луну». Крестьянина (или мещанина), по одним сведениям Петрова, по другим Никифорова, сослали в киргизский поселок Байконур» Якобы известие о факте напечатано был в Московских губернских новостях», в 1848 году. Сейчас, когда с космодрома Байконура ушли в космос не один десяток спутников и станций, этот факт выглядит пророческим и мистическим.

Алюминиевые сплавы, плюсы и минусы

Чистый алюминий в строительных конструкциях применять нецелесообразно. Прочностные характеристики у него «так себе». А вот алюминиевые сплавы — другое дело. Сейчас известны и используются около 60 сплавов. Можно выбрать для любых нужд, на любой вкус.

Классификация сплавов проводится по составу, свойствам, по способности к термической обработке.

Добавки меди, магния и марганца, цинка существенно улучшают характеристики сплава в сравнении с чистым металлом. Этими металлами чаще всего легируют алюминий. Титан, литий, ванадий, церий, скандий, некоторые редкоземельные элементы для легирования применяются реже, но свойства этих сплавов также востребованы в промышленности.

Дюраль

Дюралюмины — сплавы алюминия с медью (4%), магнием (0,5%) и небольшого количества железа, марганца, кремния. Недостаток дюралей — подверженность коррозии; с ней справляются, применяя анодирование, плакировку, авиационную грунтовку, окрашивание.

Востребованные свойства сплава: хорошая статическая и усталостная прочность, высокая вязкость разрушения.

Широко применяется в деталях и конструкциях, где большую роль играет масса изделия. Главные потребители сплава — авиация, судостроение, космонавтика.

Сплав 7075

Разрабатывался компанией Sumitomo Metal Corporation (Япония) в строжайшей тайне.

Представляет соединение алюминия с цинком (до 6%), магния (2-2,5%), меди (до 1,5%). В тот же сплав добавлены титан, кремний, марганец, хром, железо. Добавки эти составляют не более 0,5%, но свой вклад в свойства сплава вносят.

  • 7075-0;
  • 7075-06;
  • 7075-Т651;
  • 7075-Т7;
  • 7075-АСР.

Сплавы устойчивы к коррозии, хорошо полируются.

Применяются в производстве винтовок для армии и граждан. Промышленности автомобильная, авиационная, морская активно используют сплав. Его минус — достаточно высокая цена.

Сплавов разных много

В России довольно много сплавов с разными свойствами:

  • D1, D16, 1161, 1163 — алюминий, магний, медь;
  • АМГ1 — АМГ6, сплав алюминия и магния;
  • AD31, AD33, AD35, AB — алюминий, кремний, магний. Список легко продолжить.

Старость в радость

Не всегда старость — это плохо. Металл — как человек или вино; с возрастом свойства алюминия меняются; он становится лучше, крепче, сильнее.

Естественное старение металла происходит при нормальных условиях; можно сказать, что металл «дозревает».

Искусственное старение проходит при термообработке и пластическом деформировании.

Термическая обработка бывает разных видов. Выбор зависит от назначения будущего сплава.

Вид термообработки Что дает термообработка
Закалка с полным искусственным старением Высокая прочность сплава, но некоторое снижение пластичности
Закалка со стабилизирующим старением Хорошая прочность, довольно высокая стабильность структуры
Закалка с последующим смягчающим отпуском Хорошая пластичность, но снижение прочности сплава
Искусственное старение Повышает прочность сплава, улучшает возможность обработки резанием
Отжиг Повышение пластичности, уменьшение остаточных напряжений металла
Закалка Улучшает прочностные характеристики
Закалка и неполное искусственное старение Повышает прочность при сохранении пластичности

Минералы, месторождения…а самородный алюминий?

Запасы алюминия в природе огромны. Среди металлов он держит первое место по распространенности. Но «общительность», активность элемента привела к тому, что в чистом виде металл практически отсутствует.

Минералов, содержащих алюминий, много:

  • бокситы;
  • глиноземы;
  • полевые шпаты;
  • нефелины;
  • корунды.

Так что добыча алюминиевого сырья не составляет большого труда.

Если все запасы на Земле истощатся (что сомнительно), то алюминий можно добывать из морской воды. Там его содержание составляет 0,01 мг/л.

Кто захочет увидеть самородный алюминий, тому придется опускаться в жерла вулканов.

Происхождением такой металл из самых глубин нашей планеты.

Как производят крылатый металл

Производство металла можно разделить на две стадии.

  • Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
  • Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.

Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.

Метод энергозатратный, «кушает» много электричества.

Бывает технический и сверхчистый

Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.

Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.

Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.

Металл для крыльев

Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.

Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.

Где применяется

Применение легкого и прочного металла необходимо не только в авиации.

В пуленепробиваемых и бронированные стеклах, экранчиках смартфонов присутствует сапфир. У таких стекол высокая прочность на сжатие.

Из алюминия делают фольгу, которую используют в электрических конденсаторов. Домохозяйки с удовольствием запекают в фольге вкусняшки для домашних. Кастрюли, сковородки, другие изделия для домашнего хозяйства производят из «крылатого металла».

Тонко молотый порошок металла используют для производства прочной краски.

Вы удивитесь, но алюминиевая кастрюлька в кухне, самолет и перстень с сапфиром — родня. В каждом есть наш герой.

Оксид алюминия — это корунд. А к ним относятся сапфиры, рубины, изумруды — все эти короли драгоценных камней содержат алюминий. Сам корунд используют как наждак.

Купить металл

Стоимость металла на бирже 148 USD за тонну (на 05.05.2020).

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

III группа главная подгруппа периодической таблицы Менделеева (Алюминий)

Общая характеристика алюминия

Алюминий – лёгкий серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Аl — довольно активный металл, однако при обычных условиях ведет себя инертно — имеет высокую температуру воспламенения, со многими веществами реагирует только при высокой температуре;

Все реакции с участием Al проходят через первоначальный замедленный период из-за наличия на его поверхности очень тонкой, прочной, газо- и водонепроницаемой пленки Al2O3. При нарушении цельности этой пленки AI реагирует со многими веществами как активный восстановитель.

Алюминий расположен в главной подгруппе III группы, в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронная конфигурация алюминия:

Нахождение алюминия в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния).

Содержание в земной коре — примерно 8,6 %.

В природе алюминий встречается в виде соединений:

  • Бокситы — Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3)
  • Нефелины — KNa3[AlSiO4]4
  • Алуниты — (Na,K)2SO4·Al2(SO4)3·4Al(OH)3
  • Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
  • Корунд (сапфир, рубин, наждак) — Al2O3
  • Полевые шпаты — (K,Na)2O·Al2O3·6SiO2, Ca[Al2Si2O8]
  • Каолинит — Al2O3·2SiO2 · 2H2O
  • Берилл (изумруд, аквамарин) — 3ВеО · Al2О3 · 6SiO2
  • Хризоберилл (александрит) — BeAl2O4.

Способы получения алюминия

Промышленный способ:

Алюминий получают электролизом Al2O3 в расплавленном криолите (Na3AlF6) при температуре 960–970°С:

Процесс электролиза можно представить так:

На катоде происходит восстановление ионов алюминия, а на аноде — окисление алюминат-ионов:

К: Al 3+ +3e → Al 0

Лабораторный способ:

Вакуумтермический способ

Восстановление безводного хлорида алюминия металлическим калием (при нагревании и без доступа воздуха)

AlCl3 + ЗК = Al + 3KCl

Химические свойства алюминия

Качественные реакции

  • Соли алюминия можно обнаружить с помощью водного раствора аммиака. При этом выпадает полупрозрачный белый осадок гидроксида алюминия:
  • Качественной является реакция взаимодействия солей алюминия с недостатком щелочей. При этом образуется белый аморфный осадок гидроксида алюминия:

При дальнейшем добавлении щелочи осадок гидроксида алюминия растворяется с образованием комплексного соединения тетрагидроксоалюмината:

Обратите внимание, если изначально поместить соль алюминия в избыток раствора щелочи, то сразу образуется растворимый тетрагидроксоалюминат:

Взаимодействие с простыми веществами – неметаллами

С кислородом

С кислородом взаимодействуют с образованием прочной оксидной пленки — оксида.

При нагревании сгорает с выделением большого количества теплоты (экзотермическая реакция):

При этом может развиваться температура до 3500 0 С.

С галогенами (F, Cl, Br, I)

Реагирует сгалогенами с образованием галогенидов:

С водородом

C водородом алюминий непосредственно не соединяется

С серой и фосфором

Взаимодействует с серой при нагревании до 150 -200 0 С с образованием сульфида:

С фосфором образует фосфид:

С азотом

С азотом взаимодействует при нагревании до 1000 о С с образованием нитрида:

С углеродом

С углеродом взаимодействует при нагревании примерно до 2000 о С с образованием карбида:

Взаимодействие со сложными веществами

С водой

Алюминий покрыт стойкой защитной оксидной пленкой Al2O3, которая защищает алюминий от дальнейшего окисления и действия воды.

При снятии защитной пленки алюминий бурно реагирует с водой с образованием гидроксида алюминия и водорода:

Оксидную пленку можно удалить с помощью растворов щелочи, хлорида аммония или солей ртути (амальгирование)

С кислотами

  • С растворами кислот-неокислителей (HCl, H2SO4,H3PO4) взаимодействуют с образованием соли и выделением водорода:
    2Al + 6HCl →2AlCl3 + 3H2
  • С кислотами-окислителями (HNO3 и конц. H2SO4):

Алюминий не реагирует с концентрированными азотной и серной кислотами из-за пассивации.

Однако, при нагревании реакции протекают довольно активно:

С разбавленной азотной кислотой взаимодействует при обычной Т медленно при нагревании — быстро:

С щелочами

Алюминий взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

С солями

При нагревании реагирует с растворами солей менее активных металлов:

С оксидами

Алюминий при нагревании восстанавливает менее активные металлы из их оксидов:

Этот метод широко используется при получении металлов и называется алюмотермией.

Алюминий

Алюминий(Al)
Атомный номер 13
Внешний вид мягкий, лёгкий,
серебристо-белый металл,
быстро окисляющийся
Свойства атома
Атомная масса
(молярная масса)
26,.981539 а. е. м. (г/моль)
Радиус атома 143 пм
Энергия ионизации
(первый электрон)
577,2(5,98) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s 2 3p 1
Химические свойства
Ковалентный радиус 118 пм
Радиус иона 51 (+3e) пм
Электроотрицательность
(по Полингу)
1,61
Электродный потенциал -1,66 в
Степени окисления 3
Термодинамические свойства
Плотность 2,6989 г/см³
Удельная теплоёмкость 0,900 Дж/(K·моль)
Теплопроводность 237 Вт/(м·K)
Температура плавления 933,5 K
Теплота плавления 10,75 кДж/моль
Температура кипения 2740 K
Теплота испарения 284,1 кДж/моль
Молярный объём 10,0 см³/моль
Кристаллическая решётка
Структура решётки кубическая гранецентрированая
Период решётки 4,050 Å
Отношение c/a n/a
Температура Дебая 394,00 K

Алюми́ний (лат. Аluminium ) — химический символ Al, III группа периодической системы Менделеева, атомный номер 13, атомная масса 26,9815, мягкий, лёгкий, серебристо-белый металл, быстро окисляющийся, удельная плотность 2,7 г/ см³, температура плавления 660 °C. По распространённости в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов.

Содержание

  • 1 История
  • 2 Получение
  • 3 Физические свойства
  • 4 Нахождение в природе
  • 5 Химические свойства
  • 6 Применение
    • 6.1 В качестве восстановителя
    • 6.2 Сплавы на основе алюминия
    • 6.3 Алюминий как добавка в другие сплавы
    • 6.4 Ювелирные изделия
    • 6.5 Стекловарение
    • 6.6 Алюминий и его соединения в ракетной технике
  • 7 См. также
  • 8 Ссылки

История

Впервые получен в чистом виде электролизом, в 1825 году.

История алюминия. В 1807 году английский химик Гэмфри Дэви открыл вещество под названием «alum» («квасцы»), которое представляло собой соль неизвестного металла, этот металл был назван им «алюмиум». Позднее, это название было преобразовано в «aluminium» («алюминий»). Дэйви безуспешно пытался выделить этот металл с помощью электролиза (вещество практически не растворялось в воде). В 1825 году датскому физику Эрстеду удалось выделить алюминий, как отдельный элемент. Немецкий учёный Фридрих Вёлер в 1845 году провёл обширные исследования по изучению свойств этого металла, одно из которых была его необычайная лёгкость. Также он использовал новый способ получения алюминия. AlCl3 + 3K = 3KCl + Al

В 1886 году Поль Эру во Франции и Чарльз Холл из Огайо одновременно изобрели способ получения алюминия с помощью электролитического метода. Оба этих учёных родились в 1863 году и умерли в 1914 году в возрасте 51 года. Согласно этому методу расплаву подвергался не сам Al2O3, а его раствор в расплавленном криолите Na3AlF6. Данный процесс проводится в электрических печах при температуре 960°C. Способ, изобретённый двумя этими выдающимися учёными, используется и до сих пор.

Получение

Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в ХХ веке.

Физические свойства

Серебристо-белый металл, плотность 2,7 г/см 3 , пластичный, высокая тепло- и электропроводность. Температура плавления 660 °C.

Нахождение в природе

  • Бокситы – Al2O3 • H2O (с примесями SiO2, Fe2O3, CaCO3)
  • Нефелины – KNa3[AlSiO4]4
  • Алуниты – KAl(SO4)2 • 2Al(OH)3
  • Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)

В природе алюминий встречается только в соединениях (минералах ).

Нефелин — (Na, K)2O × Al2O3 × 2SiO2

Алунит – ( Na, K )2 SO4 × Al2( SO4 )3 × 4Al( OH )3

Химические свойства

При нормальных условиях алюминий покрыт тонкой и прочной оксидной пленкой и потому не реагирует с простыми веществами: с H2O (t°); O2, HNO3 (без нагревания)). Al – активный металл-восстановитель.

Легко реагирует с простыми веществами:

3) с другими неметаллами реагирует при нагревании:

Сульфид и карбид алюминия полностью гидролизуются:

Со сложными веществами:

4) с водой (после удаления защитной оксидной пленки, например, амальгамированием):

5) со щелочами (с оброзованием тетрагидроксоалюминатов и других алюминатов):

6) Легко растворяется в соляной и разбавленной серной киcлотах:

При нагревании растворяется в кислотах – окислителях, образующих растворимые соли алюминия:

Применение

Кусок алюминия и американская монетка.

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевая фольга в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной плёнки его тяжело паять.

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

  • Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.
  • Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.
  • Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками.
  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.
  • Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборов используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

Оцените статью