Как сделать термодатчик своими руками?

Механический терморегулятор: схема работы простого терморегулятора. Терморегуляторы на трех элементах. Термостат для котлов отопления. Цифровой термостат с точной калибровкой на микроконтроллерах.
Содержание

Как сделать термодатчик своими руками?

Терморегулятор своими руками

Для автоматического поддержания температурного режима можно создать терморегулятор своими руками. Качественная самоделка будет выполнять свои функции не хуже, чем фабричный аналог. После тщательного изучения процесса сборки модернизация и ремонт не вызовут затруднений.

Понятие о температурных регуляторах

Изделия этой категории применяют для решения разных задач. По соответствующей настройке температурного порога подают питание (отключают):

  • отопление в погребе;
  • нагрев паяльной станции;
  • циркуляционный насос котла.

Из приведенных примеров понятны базовые требования к точности, которую должна обеспечить подходящая схема терморегулятора. В некоторых ситуациях необходимо поддержание заданного уровня не ниже, чем ±1C°. Для контроля рабочих параметров нужна оперативная индикация. Существенное значение имеют нагрузочные способности.

Перечисленные особенности поясняют назначение типовых функциональных узлов:

  • значение температуры фиксируют специализированным датчиком (резистором, термопарой);
  • показания анализирует микроконтроллер или другое устройство;
  • исполнительный сигнал поступает на электронный (механический) переключатель.

К сведению. Кроме рассмотренных частей, схема термореле может содержать дополнительные компоненты для подачи питания на электронагреватель, другую мощную нагрузку.

Принцип работы

Любая схема термостата действует на одинаковых принципах. Информация о температуре сравнивается с установленным значением. Пересечение определенного уровня активизирует исполнительное устройство для коррекции контролируемого параметра нужным образом.

Виды

В простейшем варианте (реле холодильника) применяют механический переключатель. Для более точной регулировки (обороты двигателя) используют не только микроэлектронику, но и специализированное программное обеспечение.

Терморегулятор на трех элементах

Чтобы сделать простой терморегулятор своими руками схема для блока питания персонального компьютера подходит лучше других вариантов.

Термистором измеряют температуру в контрольной точке. Потенциометром устанавливают оптимальное значение для включения вентилятора. Изменять обороты данная схема не способна. Подключает индуктивную нагрузку MOSFET транзистор. Допустимо применение аналога с подходящими силовыми характеристиками.

Терморегуляторы для котлов отопления

Регулятор температуры своими руками можно сделать в рамках проекта модернизации старого котла. Не имеет значения вид топлива, хотя проще обеспечить хороший результат с применением газового оборудования.

Цифровой терморегулятор

В этом примере разработчики создавали устройство поддержания температурного режима в хранилище фруктов (овощей). Для анализа поступающих данных выбрана микросхема со следующими блоками:

  • таймеры;
  • генератор;
  • два компаратора;
  • модули обмена, сравнения и передачи данных.

При соответствующем положении переключателей светодиодная матрица показывает актуальное значение температуры или контрольный уровень. Кнопками в пошаговом режиме устанавливают нужный порог срабатывания.

Самодельный регулятор температуры

Создать функциональный термостат своими руками не слишком сложно. Тем не менее, надо реалистично оценивать собственные возможности. Следующие инструкции помогут принять правильное решение.

Простейшая схема

Чтобы исключить лишние трудности, применяют схему с блоком питания без трансформатора. Для выпрямления питающего напряжения используют обычный диодный мост. Необходимый уровень постоянной составляющей поддерживают стабилитроном. Конденсатором устраняют броски.

Типовой делитель подойдет для контроля напряжения. В одном плече устанавливают резистор, который реагирует на изменение температуры. Для управления исполнительным устройством подойдет реле.

Прибор для помещения

Это устройство можно использовать для поддержания температурного режима в мини-теплице, другом ограниченном объеме. Основной элемент – микросхема операционного усилителя, которая включена в режиме сравнения напряжений. Точную и грубую настройку порога срабатывания выполняют с помощью резисторов R5 и R4, соответственно.

На микросхеме LM 311

Этот вариант предназначен для подключения электрических теплых полов, других мощных нагрузок. Следует обратить внимание на повышенную надежность изделия, которая обеспечена гальванической развязкой цепей со слабыми и сильными токами.

Необходимые материалы и инструменты

В некоторых ситуациях понадобятся навыки изготовления сложной печатной платы. Простейшие схемы собирают за несколько минут с применением паяльника и технологии навесного монтажа. До выполнения рабочих операций необходимо приобрести:

  • комплектующие детали;
  • расходные материалы;
  • измерительную аппаратуру.

Список покупок составляют на основе выбранной электрической схемы. Для защиты устройства от неблагоприятных внешних воздействий и улучшения внешнего вида создают соответствующий корпус.

Достоинства и недостатки

Плюсы и минусы отдельных схем оценивают с учетом реальных условий эксплуатации. Иногда выгодно затратить время и деньги на стадии реализации идеи с целью продления срока службы готового изделия. Нет смысла создавать самоделку, если фабричный аналог с официальными гарантиями стоит дешевле.

Как грамотно установить

Чтобы продлить срок службы терморегулятора, пользуются следующими рекомендациями:

  • не устанавливают электронику без дополнительной защиты на открытом воздухе, в помещениях с повышенным уровнем влажности;
  • при необходимости в неблагоприятную среду выносят контрольный датчик;
  • исключают расположение регулятора напротив тепловых пушек, других «генераторов» холода или тепла;
  • для повышения точности выбирают место без активных конвекционных потоков.

Как отремонтировать

Самодельный термодатчик своими руками восстановить нетрудно, так как известна технология проверки (настройки). Инструкции по ремонту фабричных изделий можно найти на официальном сайте производителя.

Видео

Делаем датчик температуры своими руками

Термодатчик, собранный своими руками, может принести несомненную пользу, как в домашнем, так и приусадебном хозяйстве. Контроллер температуры окружающей среды вовремя включит или наоборот выключит вентилятор, обогреватель, кипятильник, тёплые полы и много других приборов в доме, обогреет или проветрит теплицы. При наличии минимального опыта работы с инструментами сделать датчик температуры своими руками не составит особого труда.

Принцип работы

Идея создания термодатчика состоит в том, что в его качестве используется электропроводной элемент, который под воздействием колебаний температуры окружающей среды меняет своё сопротивление. Таким элементом является терморезистор.

Принцип работы переменного сопротивления заключается в том, что при нагреве сопротивление понижается и ток, протекающий через него, меняет свою характеристику. Этот процесс находит своё отражение в работе прикладной схемы, которая включает или выключает соответствующие приборы.

Изготовление простого термодатчика

Перед тем, как сделать датчик температуры, нужно подготовить следующее:

  • блок питания 12 В;
  • вентилятор (кулер от компьютера 12 В);
  • терморезистор VDR1 (10 кОм);
  • переменный резистор (10 кОм);
  • полевой транзистор IRFZ 44;
  • макетная плата;
  • провода;
  • паяльник с припоем.

Сборка

Подготовив вышеперечисленные материалы и инструмент, переходят к пайке простенькой схемы.

  1. Плюсовую клемму блока питания соединяют проводом с входным контактом (+) кулера;
  2. Три вывода полевого транзистора спаивают проводами так: «исток» с кулером, «затвор» с терморезистором, «сток» с переменным резистором.
  3. Проводами соединяют свободные контакты терморезистора с «+» блока питания, переменного резистора с «−» того же блока.

Проверка

Тестируют терморегулятор в таком порядке:

  • к терморезистору подносят горящую спичку или зажигалку при этом должен заработать кулер;
  • при остывании вентилятор должен выключиться;
  • если схема не срабатывает, нужно перепроверить пайку и контакты.

TR — терморезистор, К — кулер, R1 — переменный резистор, ПТ — полевой транзистор, АБ — аккумуляторная батарея 12 В.

Настройка

В данном случае используется терморезистор, сопротивление которого равно 10 кОм при температуре воздуха 20 °С. При его нагреве сопротивление падает. Нужно подстроить переменный резистор на включение кулера в момент нагрева датчика. Методом подбора нескольких положений поворотного регулятора переменного сопротивления добиваются нужного эффекта.

Термодатчик на германиевых диодах

Особенностью германиевых полупроводниковых диодов является их высокая чувствительность к изменениям температуры воздуха. Поэтому эти радиодетали могут использоваться, как термодатчики при их обратном включении.

Их применение объясняется сильной зависимостью обратного тока от температуры окружающей среды. Эта особенность диодов используется в простой схеме регулятора скорости кулера.

Германиевые диоды, соединённые параллельно (3–4 шт.), включают в обратном направлении в цепь базы составного транзистора. Их стеклянные корпуса можно крепить прямо на кулер без всяких прокладок-теплоотводов. Резистор R1 предохраняет транзистор от теплового пробоя, а R2 определяет порог срабатывания регулятора. Если при превышении комнатной температуры вентилятор не включается, то число диодов надо увеличить. Когда кулер начинает вращать лопасти с большой скоростью количество радиодеталей уменьшают.

Применение термодатчика на Ардуино

Для сборки измерителя температуры в основе которого микроконтроллер Arduino нужно подготовить следующее:

  • Ардуино UNO;
  • коннекторы;
  • монтажная плата;
  • цифровой модуль DS18B20 (диапазон от −56 до +1250 С).

Цифровой температурный датчик DS18B20 — это устройство, которое не только сигнализирует о превышении заданного температурного порога, но и может запоминать значения измерений. Микросхема датчика имеет три выходных контакта — это «+», «−» и сигнальный провод. Термодатчик в водонепроницаемом исполнении используется для измерения нагрева воды или жидкостей.

Термодатчик всегда можно приобрести, как и плату Arduino, в интернет-магазинах. Цифровой модуль подсоединяют к Ардуино через каналы GND, а выход Vdd подключается к 5V, Data к любому Pin. Для более понятного восприятия схема подключения цифрового датчика DS18B20 к Ардуино представлена на нижеследующем фото.

Заключение

В зависимости от цели использования измерителя температуры окружающего пространства для самостоятельного его изготовления можно выбрать наиболее приемлемый и выгодный по затратам вариант. Для охлаждения энергозатратных плат достаточно использовать простую схему с кулером. А вот для работы с вентиляционным и обогревательным оборудованием уже понадобится более сложная система с использованием микроконтороллера Ардуино и термодатчиков заводского изготовления.

Видео по теме

Как сделать датчик температуры своими руками. Как сделать терморегуляторы своими руками

Среди многочисленного ассортимента полезных приборов, которые приносят в нашу жизнь комфорт, есть большое количество тех, которые можно сделать своими руками. К этому числу можно отнеси и терморегулятор, который включает или отключает нагревательные и холодильные оборудования в соответствии с определенной температурой, на которую он установлен. Такое устройство отлично подойдет на период холодной погоды, например для подвала, где нужно хранить овощи. Так как же сделать терморегулятор своими руками, и какие детали для этого понадобятся?

Терморегулятор своими руками: схема

Про конструкцию термостата можно сказать, что она не особа сложна, именно по этой причине большинство радиолюбителей начинают свое обучение именно с этого прибора, а так же именно на нем оттачивают свои навыки и мастерство. Схем прибора можно найти очень большое количество, но самой распространенной является схема с применением, так называемого компаратора.

Данный элемент имеет несколько входов и выходов:

  • Один вход отвечает подачу эталонного напряжения, которое отвечает необходимой температуре;
  • Второй получает напряжения от датчика температуры.

Сам компаратор принимает все поступающие показания и сравнивает их. В случае если будет генерировать сигнал на выходе, то он включит реле, которое подаст ток на обогревательный или холодильный аппарат.

Общее понятие о температурных регуляторах

Приборы, фиксирующие и одновременно регулирующие заданное температурное значение, в большей степени встречаются на производстве. Но и в быту они также нашли своё место. Для поддержания необходимого микроклимата в доме часто используются терморегуляторы для воды. Своими руками делают такие аппараты для сушки овощей или отопления инкубатора. Где угодно может найти своё место подобная система.

В данном видео узнаем что из себя представляет регулятор температуры:

В действительности большинство терморегуляторов являются лишь частью общей схемы, которая состоит из таких составляющих:

  1. Датчик температуры, выполняющий замер и фиксацию, а также передачу к регулятору полученной информации. Происходит это за счёт преобразования тепловой энергии в электрические сигналы, распознаваемые прибором. В роли датчика может выступать термометр сопротивления или термопара, которые в своей конструкции имеют металл, реагирующий на изменение температуры и под её воздействием меняющий своё сопротивление.
  2. Аналитический блок – это и есть сам регулятор. Он принимает электронные сигналы и реагирует в зависимости от своих функций, после чего передаёт сигнал на исполнительное устройство.
  3. Исполнительный механизм – некое механическое или электронное устройство, которое при получении сигнала с блока ведёт себя определённым образом. К примеру, при достижении заданной температуры клапан перекроет подачу теплоносителя. И напротив, как только показания станут ниже заданных, аналитический блок даст команду на открытие клапана.

Это три основные части системы поддержания заданных температурных параметров. Хотя, помимо них, в схеме могут участвовать и другие части наподобие промежуточного реле. Но они исполняют лишь дополнительную функцию.

Какие детали понадобятся: терморегулятор своими руками

Для датчика температуры чаще всего используют терморезистор, это элемент который регулирует электрическое сопротивление в зависимости от температурного показателя.

Так же часто применяют полупроводниковые детали:

  • Диоды;
  • Транзисторы.

На их характеристики температура должна оказывать такое же влияние. То есть при нагреве должен увеличиваться ток транзистора и при этом он должен престать работать, не смотря на входящий сигнал. Нужно учесть, что такие детали обладаю большим недостатком. Слишком сложно провести калибровку, говоря точнее, будет трудно привязать эти детали к некоторым датчикам температуры.

Однако на данный момент промышленность не стоит на месте, и вы можете увидеть приборы из серии 300, это LM335, которым все чаще рекомендуют воспользоваться специалисты и LM358n. Не смотря на очень низкую стоимость, данная деталь занимает первую позицию в маркировках и ориентируется на сочетание с бытовой техникой. Стоит упомянуть, что модификации этой детали LM 235и 135 успешно применяются в военных сферах и промышленности. Включая в свою конструкцию около 16 транзисторов, датчик способен работать в качестве стабилизатора, а его напряжение будет полностью зависеть от температурного показателя.

Зависимость заключается в следующем:

  1. На каждый градус будет приходиться около 0, 01 В, если ориентироваться на Цельсий, то на показатель 273 результат на выходе составит 2, 73В.
  2. Диапазон работы ограничивается в показателе от -40 до +100 градусов. Благодаря таким показателям, пользователь полностью избавляется от регулирований методом проб и ошибок, а требуемая температура будет в любом случае обеспечена.

Так же кроме датчика температур вам потребуется компаратор, лучше всего приобрести LM 311, который выпускает тот же производитель, потенциометр для того чтобы сформировать эталонное напряжение и выходную установку чтобы включать реле. Не забудьте приобрести блок питания и специальные индикаторы.

Контроль в помещениях

Возможен вариант контроля терморегулятора в нескольких помещениях.

Типовая схема терморегулятора для погреба.

Приборы обозначаются латинскими буквами и цифрами. Например, LM135. Чтобы не ошибиться в выборе, запомните: 1 — применение в военной технике, 2 — применение в производственных аппаратах и устройствах, 3 — применение в бытовых приборах. Российским аналогом является обозначение транзисторов — 2Т (военный) и КТ (массовый). Принцип действия такого датчика таков: при повышении температуры увеличивается напряжение стабилизации, то есть это стабилитрон. Удостовериться в правильности выбора можно, почитав технические характеристики прибора. Точка калибровки указана в кельвинах. Температурная шкала указана в градусах по Цельсию.

Вспоминая школьный курс физики, переводите 0С= 0+273=273К. Рабочий диапазон датчика от -40 до 100°C. Если используется такой датчик, нет нужды в сомнительных опытах. Достаточно рассчитать напряжение на выходе стабилитрона, а затем это значение указать задающим на входе компаратора (сравнивающего устройства). Температурный сенсор LM335 стоит недорого — порядка 35-40 рублей. Взяв за основу этот термодатчик, нарисуйте схему терморегулятора для погреба.

Принципиальная электрическая схема терморегулятора.

На практике она дополнится выходным устройством для включения нагревателя, блоком питания и индикатором работы.

Следующий важный элемент — компаратор, например LM311. Он имеет два входа — прямой (2), обозначенный «+», и инверсный (3), обозначенный «-», и один выход. На схеме выход компаратора обозначен цифрой 7. Работает это устройство так: напряжение на входе 2 больше, чем на входе 3, на выходе получаем высокий уровень. Транзистор открылся, подключил нагрузку. Потенциометр, подключенный к прямому входу, устанавливает температуру — задает порог срабатывания компаратора. При обратной ситуации (напряжение на входе 2 меньше, чем на входе 3), на выходе уровень понижается. Повышается температура, срабатывает термореле, компаратор переходит на низкий уровень, транзистор закрывается, ТЭН выключается. Этот цикл повторяется беспрерывно.

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Регулятор температуры своими руками: питание и нагрузка

Что касается подключения LM 335 то оно должно быть последовательным. Все сопротивления необходимо подобрать так, чтобы общая величина тока, который проходит через термодатчик соответствовала показателям от 0,45 мА до 5 мА. Превышения отметки допускать нельзя, так как датчик будет перегреваться, и показывать искаженные данные.

Запитка терморегулятора может происходить несколькими способами:

  • С помощью блока питания с ориентировкой на 12 В;
  • С помощью любого другого устройства, питание которого не превышает вышеуказанный показатель, но при этом ток, протекающий через катушку не должен превышать 100 мА.

Еще раз напомним о том, что показатель тока в цепи датчика не должен превышать 5 мА, по этой причине придется использовать транзистор с большой мощностью. Лучше всего подойдет КТ 814. Конечно, если вы хотите избежать применения транзистора, можно использовать реле с меньшим уровнем тока. Он сможет работать от напряжения в 220 В.

Самодельный терморегулятор: пошаговая инструкция

Если вы приобрели все необходимые составляющие для сборки, осталось рассмотреть подробную инструкцию. Рассматривать будем на примере датчика температуры рассчитанного на 12В.

Самодельный регулятор температуры собирается по следующему принципу:

  1. Подготавливаем корпус. Можно использовать старые оболочки от счетчика, например от установки «Гранит-1».
  2. Схему подбираете ту, которая вам больше понравится, но можно и сориентироваться и на плату от счетчика. Прямой ход с пометкой «+» необходим для подключения потенциометра, Инверсионный вход с о будет служить для подключения термодатчика. Если так случилось, что напряжение на прямом входе будет выше требуемого, на выходе установится высокая отметка и транзистор начнет подавать питание на реле, а оно в свою очередь на нагревательный элемент. Как только напряжение на выходе превысит допустимую отметку – реле отключится.
  3. Для того чтобы терморегулятор срабатывал вовремя и перепады температур были обеспечены, потребуется сделать с помощью резистора связь отрицательного типа, которая образуется между прямым входом и выходом на компараторе.
  4. Что касается трансформатора и его питания, то здесь может понадобиться индукционная катушка от старого электрического счетчика. Для того чтобы напряжение соответствовало показателю в 12 вольт, вам нужно будет сделать 540 витков. Уместить их получится только в том случае, если диаметр провода будет не более 0,4 мм.

Вот и все. В этих небольших действиях и заключается вся работа по созданию терморегулятора своими руками. Возможно, самому без определенных навыков сделать его сразу и не получится, однако с опорой на фото и видео инструкции вы сможете испытать все свои умения.

Благодаря простой конструкции, самостоятельно созданный термоконтроллер может быть использован где угодно.

Например:

  • Для теплого пола;
  • Для погреба;
  • Котла отопления;
  • Может заняться регулировкой температуры воздуха;
  • Для духовки;
  • Для аквариума, где будет контролировать температурный показатель воды;
  • Для того чтобы контролировать температурное значение насоса электрокотла (его включения и отключение);
  • И даже для автомобиля.

Не обязательно использовать цифровой, электронный или механический покупной термовыключатель. Купив недорогое термореле, сделать регулировку мощности на симисторе и термопаре и ваш самодельный аппарат будет работать не хуже покупного.

Достоинства и недостатки

Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.

Регуляторы температуры позволяют:

  1. Поддерживать комфортную температуру.
  2. Экономить энергоресурсы.
  3. Не привлекать к процессу человека.
  4. Соблюдать технологический процесс, повышая качество.

Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.

При оборудовании погреба необходимо создать такой температурный режим, при котором все запасы будут сохраняться максимально долго. А чтобы его поддерживать, потребуется терморегулятор — прибор, который помогает поддерживать заданную температуру. Это устройство используется во многих бытовых приборах: утюгах, холодильниках, паяльниках. Как сделать терморегулятор для погреба своими руками?

Простые терморегуляторы

Многим радиолюбителям известен так называемый «триггерный эффект» на пороге срабатывания термо-, фотореле, автоматического зарядного устройства и т.п. Устройство может сработать нормально десятки раз, но иногда бывает такой неприятный момент, когда исполнительное реле включится, сразу же выключится, опять включится и т.д. Такое явление может проявляться довольно длительное время — «подгорают» контакты реле, да и ресурс времени работы реле не безграничен. Если в схеме применены тиристоры, то при частом включении-выключении они могут греться и выходить из строя, а также давать помехи в питающую сеть. На рис.1 показана схема терморегулятора на реле, в котором такое вредное явление, как «триггерный эффект», отсутствует.

Предположим, что данный терморегулятор используют для регулировки температуры воздуха в инкубаторе. Если температура в инкубаторе ниже +38°С (выставляют переменным резистором R4), сопротивление терморезистора R3 сравнительно большое и компаратор на DA1 находится в режиме положительного насыщения, транзисторы VT1 и VT2 открыты, реле К1 притянуто, и происходит нагревание воздуха в инкубаторе. При достижении в инкубаторе температуры +38°С сопротивление терморезистора R3 становится меньше и компаратор перебрасывается в состояние отрицательного насыщения (на выходе потенциал общего провода), закрываются транзисторы VT1 и VT2, реле К1 отпускает. В связи с тем, что последовательно с резистором R1 включен резистор R2, который шунтируется нормально замкнутыми контактами реле К1, реле включается при одной температуре, а выключается при другой, т.е. поддерживается температура в инкубаторе в пределах, например, +37,5. 38°С. Необходимая разность температур обеспечивается подбором резистора R2. Таким образом, такое вредное явление, как «триггерный эффект», в данной схеме терморегулятора отсутствует. Напряжение срабатывания реле К1 должно быть не ниже 10 В, контакты реле должны выдерживать коммутируемый переменный ток и быть рассчитаны на напряжение не менее 250 В. Печатная плата терморегулятора показана на рис.2.

На рис.3 показана схема терморегулятора с тиристором в силовой части, которая также свободна от явления «триггерного эффекта».

Предположим, что данный терморегулятор также используют для инкубатора, необходимая температура воздуха в нем должна быть в пределах +38. 39°С (данный диапазон температур выставляют переменным резистором R4). На ОУ микросхемы DA1 выполнен двухпороговый компаратор. Если температура в инкубаторе ниже +38°С, сопротивление терморезистора R3 сравнительно большое, и оба компаратора находятся в состоянии положительного насыщения (уровень лог.»1″ на их выходах). На логических элементах DD1.2, DD1.3 построен RS-триггер. Если температура воздуха в инкубаторе ниже +38°С, на входе S RS-триггера присутствует лог.»0″ (после инвертора DD1.1), на входе R — лог.»1″, триггер находится в «единичном» состоянии (лог.»0″ на его инверсном выходе 4 DD1.3). При этом транзистор VT1 закрыт, на управляющий электрод тиристора VS1 подается положительный потенциал относительно его катода, тиристор открыт, нагревательный элемент Rн включен. При достижении температуры воздуха в инкубаторе +38°С сопротивление терморезистора R3 уменьшается, компаратор на DA1.1 перебрасывается из состояния положительного насыщения в состояние отрицательного насыщения, на его выходе устанавливается лог.»0″, на входе S триггера — лог.»1″, но триггер остается в «единичном» состоянии, нагревательный элемент RH включен. Когда температура воздуха в инкубаторе достигнет значения +39°С, лог.»0″ появится и на выходе компаратора DA1.2, который по входу R RS-триггера установит его в «нулевое» состояние. При этом на выводе 4 DD1.3 появится лог.»1″, которая откроет транзистор VT1, на управляющем электроде тиристора VS1 установится низкий потенциал относительно его катода, тиристор закроется, и нагреватель отключится от питающей сети. Когда температура воздуха в инкубаторе станет ниже +39°С, но выше +38°С, в состояние положительного насыщения установится компаратор DA1.2, но лог.»1″ на входе R триггера не изменит его нулевого состояния, и нагреватель по-прежнему будет отключен. И только при понижении температуры воздуха в инкубаторе ниже +38°С, в состояние положительного насыщения установится компаратор DА 1.1, на вход S триггера поступит лог.»0″, который включит в работу нагреватель Rн. Таким образом, температура в инкубаторе поддерживается в пределах +38. +39°С (необходимую разность температур достигают подбором сопротивления резистора R2), и явление «триггерного эффекта» в данной схеме терморегулятора отсутствует. Печатная плата терморегулятора показана на рис.4.

При налаживании и эксплуатации устройства необходимо соблюдать осторожность и не касаться деталей, так как в схеме присутствует потенциал сети. Целесообразно для более точной и плавной регулировки температуры подобрать переменный резистор R4 (также и в схеме рис.1). Диоды VD1-VD4 можно исключить. В этом случае на нагревателе Rн будет только одна полуволна сетевого напряжения, т.е. при мощности 500 Вт на нагревателе будет выделяться 250 Вт, и значительно возрастет надежность и долговечность самого нагревателя. Напряжение на вторичной обмотке трансформатора Т1 должно быть в пределах 13. 16 В.

Терморегулятор своими руками: пошаговая инструкция изготовления самодельного устройства

Среди разнообразных полезных штуковин, способных добавить комфорта в нашу жизнь, много таких, которые легко можно сделать самостоятельно.

В эту категорию входит и термостат, также называемый терморегулятором, – прибор, включающий и отключающий нагревательное или холодильное оборудование в соответствии с температурой среды, в которой он установлен.

Такое устройство может, к примеру, во время сильных холодов включать обогреватель в подвале, где хранятся овощи. Из нашей статьи вы узнаете о том, как можно сделать терморегулятор своими руками (для котла отопления, холодильника и других систем) и какие детали подходят для этого лучше всего.

Простой терморегулятор своими руками – схема

Устройство термостата особой сложностью не отличается, поэтому многие начинающие радиолюбители оттачивают на изготовлении этого прибора свое мастерство. Схемы предлагаются самые разные, но наибольшее распространение получил вариант с применением особой микросхемы, называемой компаратором.

У этого элемента есть два входа и один выход. На один вход подается некое эталонное напряжение, которое соответствует требуемой температуре, а на второй – напряжение от термодатчика.

Схема терморегулятора для теплых полов

Компаратор сравнивает поступающие данные и при определенном их соотношении генерирует на выходе сигнал, открывающий транзистор или включающий реле. При этом подается ток на нагреватель или холодильный агрегат.

Детали устройства регулятора температуры своими руками

В роли датчика температуры обычно выступает терморезистор – элемент, электрическое сопротивление которого меняется в зависимости от температуры. Используют и полупроводниковые элементы – транзисторы и диоды, на характеристики которых температура также оказывает влияние: при нагреве увеличивается ток коллектора (у транзисторов), при этом наблюдается смещение рабочей точки и транзистор перестает работать, не реагируя на входной сигнал.

Но у таких сенсоров есть существенный недостаток: их довольно сложно откалибровать, то есть «привязать» к определенным значениям температуры, из-за чего точность самодельного терморегулятора оставляет желать лучшего.

Между тем промышленность давно освоила выпуск недорогих термодатчиков, калибровка которых осуществляется в процессе изготовления.

К таковым относится прибор марки LM335 от компании National Semiconductor, которым мы и рекомендуем воспользоваться. Стоимость этого аналогового термодатчика составляет всего 1 доллар.

«Тройка» на первой позиции цифрового ряда в маркировке означает, что прибор ориентирован на применение в бытовой технике. Модификации LM235 и LM135 предназначены для использования, соответственно, в промышленности и в военной сфере.

Имея в своем составе 16 транзисторов, этот датчик работает как стабилитрон. При этом его напряжение стабилизации зависит от температуры.

Зависимость следующая: на каждый градус по абсолютной шкале (по Кельвину) приходится 0,01 В напряжения, то есть при нуле по Цельсию (273 по Кельвину) напряжение стабилизации на выходе составит 2,73 В. Производитель калибрует датчик по температуре в 25С (298К). Рабочий диапазон лежит в пределах от -40 до +100 градусов Цельсия.

Таким образом, собирая терморегулятор на базе LM335, пользователь избавляется от необходимости подбирать методом проб и ошибок эталонное напряжение, при котором прибор обеспечит требуемую температуру.

Его можно рассчитать, используя несложную формулу:

V = (273 + T) x 0.01,

Где Т – интересующая пользователя температура по шкале Цельсия.

Помимо термодатчика нам понадобится компаратор (подойдет марки LM311 от того же производителя), потенциометр для формирования эталонного напряжения (настройка требуемой температуры), выходное устройство для подключения нагрузки (реле), индикаторы и блок питания.

Терморегулятор – неотъемлемая часть автономного отопления. Термостат для котла отопления поможет поддерживать температуру в доме на комфортном уровне.

Принцип действия терморегулятора для инфракрасного обогревателя разберем тут.

Стоит ли устанавливать термостат для радиатора отопления? В этой статье https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/termoregulyator-dlya-radiatora-otopleniya.html рассмотрим назначение прибора и виды и особенности монтажа.

Электропитание терморегулятора

Температурный датчик LM335 подключается последовательно с резистором R1. Так вот, сопротивление этого резистора и напряжение питания должны быть подобраны таким образом, чтобы величина протекающего через термодатчик тока находилась в пределах от 0,45 до 5 мА.

Превышать максимальное значение этого диапазона не следует, так как характеристики сенсора будут искажаться из-за перегрева.

Запитать терморегулятор можно от стандартного блока питания на 12 В либо от изготовленного собственными силами трансформатора.

Включение нагрузки

В качестве исполнительного устройства, подающего питание на нагреватель, можно применить автомобильное реле. Оно рассчитано на напряжение в 12 В, при этом через катушку должен протекать ток в 100 мА.

Напомним, что ток в цепи термодатчика не превышает 5 мА, поэтому для подключения реле нужно применить транзистор с большей мощностью, например, КТ814.

Можно применить реле с меньшим током включения, такое как SRA-12VDC-L или SRD-12VDC-SL-C – тогда транзистор не понадобится.

Как сделать терморегулятор своими руками: пошаговая инструкция

Рассмотрим, как изготавливаются терморегуляторы (термореле) с датчиком температуры воздуха своими руками на 12 В. Сборка прибора осуществляется в такой последовательности:

  1. Прежде всего, нужно подготовить корпус. Подойдет отслуживший свое счетчик, например, «Гранит-1».
  2. Схему можно собрать на плате от того же счетчика. К прямому входу компаратора (помечен знаком «+») подключается потенциометр, позволяющий задавать температуру. К инверсному входу (знак «-») – термодатчик LM335. Если напряжение на прямом входе окажется более высоким, чем на инверсном, на выходе компаратора установится высокий уровень (единица) и транзистор подаст питание на реле, а оно – на нагреватель. Как только напряжение на инверсном входе окажется большим, чем на прямом, уровень на выходе компаратора станет низким (ноль) и реле отключится.
  3. Чтобы обеспечить перепад температур, то есть срабатывание терморегулятора, к примеру, при 23-х градусах, а отключение – при 25-ти, необходимо при помощи резистора создать отрицательную обратную связь между выходом и прямым входом компаратора.
  4. Трансформатор для питания терморегулятора можно изготовить из катушки от старого электросчетчика индукционного типа. На ней имеется место для вторичной обмотки. Чтобы получить напряжение в 12 В, необходимо намотать 540 витков. Их удастся уместить, если использовать провод диаметром 0,4 мм.

Простой самодельный термостат

Для включения нагревателя удобно использовать клеммник счетчика.

Каким должен быть нагреватель?

Мощность нагревателя зависит от того, какой ток могут выдержать контакты используемого реле. Если это значение составляет, к примеру, 30 А (на такой ток рассчитано автомобильное реле), то обогреватель может иметь мощность до 30 х 220 = 6,6 кВт. Только необходимо сначала убедиться, что проводка и автомат в щитке способны выдержать такую нагрузку.

Монтаж

Терморегулятор следует устанавливать в нижней части помещения, где скапливается холодный воздух.

При этом важно предотвратить воздействие тепловых помех, которые могут сбить прибор с толку.

Так, например, не стоит размещать терморегулятор на сквозняке или вблизи электрооборудования, излучающего тепло.

Настройка терморегулятора

Как уже говорилось, терморегулятор на базе датчика LM335 в настройке не нуждается. Достаточно знать напряжение, подаваемое потенциометром на прямой вход компаратора.

Измерить его можно при помощи вольтметра. Необходимое значение напряжения определяется по приведенной выше формуле.

Если нужно, к примеру, чтобы прибор срабатывал при температуре в 20 градусов, оно должно составлять 2,93 В.

Если в качестве термодатчика применяется какой-либо иной элемент, эталонное напряжение придется проверять опытным путем. Для этого необходимо воспользоваться цифровым термометром, например, ТМ-902С. Для точности настройки датчики термометра и терморегулятора можно соединить посредством изоленты, после чего их помещают в среду с различной температурой.

Терморегулятор из подручных материалов

Ручку потенциометра нужно плавно вращать, пока терморегулятор не сработает. В этот момент следует посмотреть на шкалу цифрового термометра и отображаемую на ней температуру нанести на шкалу терморегулятора. Можно определить крайние точки, например, для температуры в 8 и 40 градусов, а промежуточные значения отметить, разделив диапазон на равные части.

Если цифрового термометра под рукой не оказалось, крайние точки можно определять по воде с плавающим в ней льдом (0 градусов) или по кипящей воде (100 градусов).

Сталкиваясь с выбором обогревателя, люди обнаруживают, что типов приборов существует немало, но выбрать нужно один. Керамический обогреватель для дома – тонкости правильного выбора, обзор моделей и цен.

Нормы влажности воздуха и способы ее измерения представлены в этой теме.

Видео на тему

Оцените статью