Спектрометр своими руками в домашних условиях

Спектрометр своими руками в домашних условиях В предыдущих статьях я описывал, как тестировал различные светодиоды для растений. Для анализа спектра я использовал дифракционную решетку и
Содержание

Спектрометр своими руками в домашних условиях

Спектрометр своими руками в домашних условиях

В предыдущих статьях я описывал, как тестировал различные светодиоды для растений. Для анализа спектра я использовал дифракционную решетку и школьный спектроскоп на основе призмы взятые у знакомого учителя физики.

Но потребность в таком приборе появляется периодически и спектроскоп, а еще лучше спектрометр хотелось бы иметь под рукой.

Идеальным входом была бы покупка спектрометра, но жаба вежливо покрутила у виска.
Попытка сварганить спектрометр из CDROMа хорошего стабильного результата не дала.
И тогда мой взгляд обратился к ювелирным спектроскопам.

Дешевый сегмент китайского рынка представлен двумя типами спектроскопов — с призмой и чуть более дорогой — с дифракционной решеткой.

Мой выбор — ювелирный спектроскоп с дифракционной решеткой

Раз вещь для ювелиров — то в комплекте шел «кожаный» чехол

Размеры у спектроскопа маленькие

Что в прочем было ясно из описания магазина
Собрано все крепко, так что расчлененки не будет.
Поверим и так, что с одной стороны трубки стоит объектив-линза, с другой дифракционная решетка и защитное стекло.

А внутри красивая радуга. Налюбовавшись ею вволю стал искать, а что бы такое посмотреть на спектре.
К сожалению, по прямому назначению спектроскоп применить не удалось, так как вся моя коллекция брильянтов и драгоценных камней ограничилась обручальным кольцом, совершенно непрозрачным и не дающим никакого спектра. Ну разве что в пламени горелки ))).
Зато ртутная люминисцентная лампа честно дала много красивых полосок. Вволю налюбовавшись различными источниками света озадачился вопросом, что нужно картинку как то зафиксировать и спектр измерить.

Немного DIY

В голове уже давно крутилась картинка насадки на фотоаппарат, а под столом стоял ЧПУ станочек, не прошедший еще последней модернизации, но вполне успешно справляющийся с ПВХ пластиком.

Конструкция получилась не очень красивой. Все таки люфты по X и Y я победил не до конца. Ничего ШВП уже лежат в сборе и ждут, когда опорные линейные рельсы приедут.

А вот функциональность получилось вполне приемлемой, чтобы радуга отобразилась на стареньком Canon, давно лежащем без дела.

Правда тут меня ждало разочарование. Красивая радуга становилась какой то дискретной.

Всему вина — RGB матрица любого фотоаппарата и камеры. Поигравшись с настройками баланса белого цвета и режимами съемки, я смирился с картинкой.
Ведь преломление света не зависит от того, каким цветом фиксировать изображение. Для спектрального анализа подошла бы и черно-белая камера с максимально равномерной чувствительностью по всей ширине измеряемого диапазона.

Методика спектрального анализа.

Путем проб и ошибок нарисовалась такая методика
1. Рисуется картинка шкалы видимого диапазона света (400-720нм), на ней обозначаются основные линии ртути для калибровки.

2. Снимается несколько спектров, обязательно с эталонным ртутным. В серии съемок нужно зафиксировать положение спектроскопа на объективе, чтобы исключить сдвиг спектра из серии снимков по горизонтали.

3. В графическом редакторе шкала подгоняется под ртутный спектр, а все остальные спектры масштабируются без горизонтального сдвига в редакторе. Получается что-то вроде этого

4. Ну а потом все загоняется в программу анализатор Cell Phone Spectrometer из этой статьи

Проверяем методику на зеленом лазере, у которого длина волны известна — 532нм

Погрешность получилась около 1% что при ручной методике подгона ртутных линий и рисования шкалы практически от руки очень даже неплохо.
Попутно узнал, что зеленые лазеры не прямого излучения, как красные или синие, а используют твердотельную диодную накачку (DPSS) с кучей вторичных излучений. Век живи — век учись!

Измерение длины волны красного лазера тоже подтвердило правильность методики

Для интереса померил спектр свечки

и горящего природного газа

Теперь можно мерить спектр светодиодов, например «полный спектр» для растений

Спектрометр готов и работает. Теперь буду готовить с его помощью следующий обзор — сравнение характеристик светодиодов разных производителей, дурят ли нас китайцы и как сделать правильный выбор.

Вкратце, полученным результатом доволен. Может быть имело смысл подключить спектроскоп к веб камере для непрерывного измерения спектра, как в этом проекте

Спектрометр из светодиодов на основе Arduino

Основные этапы работ

Самый примитивный вариант спектрометра можно изготовить из плотной бумаги или картона. Но обратите внимание, что внутренняя часть корпуса обязательно должна быть темной, чтобы не отражать, а поглощать свет. Для этой цели можно использовать обычный черный маркер (то есть нужно просто закрасить картон).

Для получения спектра излучаемого света потребуется также дифракционная решетка, которую лучше всего изготовить из оптического DVD-диска. Нужно просто вырезать из компакт-диска кусок прямоугольной формы, затем разделить пластины. Для дифракционной решетки необходим именно прозрачный слой.

Прямоугольную пластину приклеиваем к картону, а затем склеиваем и сам корпус. Работает самодельный спектрометр очень просто — достаточно направить его на источник света в доме и посмотреть на прозрачную пластину, вырезанную из DVD-диска. Если же прислонить к ней камеру смартфона, то можно делать снимки, и уже по ним потом анализировать спектр конкретной лампочки.

В предыдущих статьях я описывал, как тестировал различные светодиоды для растений. Для анализа спектра я использовал дифракционную решетку и школьный спектроскоп на основе призмы взятые у знакомого учителя физики.

Но потребность в таком приборе появляется периодически и спектроскоп, а еще лучше спектрометр хотелось бы иметь под рукой.

Идеальным входом была бы покупка спектрометра, но жаба вежливо покрутила у виска. Попытка сварганить спектрометр из CDROMа хорошего стабильного результата не дала. И тогда мой взгляд обратился к ювелирным спектроскопам.

Дешевый сегмент китайского рынка представлен двумя типами спектроскопов — с призмой и чуть более дорогой — с дифракционной решеткой.

Мой выбор — ювелирный спектроскоп с дифракционной решеткой

Раз вещь для ювелиров — то в комплекте шел «кожаный» чехол

Размеры у спектроскопа маленькие

Что в прочем было ясно из описания магазина Собрано все крепко, так что расчлененки не будет. Поверим и так, что с одной стороны трубки стоит объектив-линза, с другой дифракционная решетка и защитное стекло.

А внутри красивая радуга. Налюбовавшись ею вволю стал искать, а что бы такое посмотреть на спектре. К сожалению, по прямому назначению спектроскоп применить не удалось, так как вся моя коллекция брильянтов и драгоценных камней ограничилась обручальным кольцом, совершенно непрозрачным и не дающим никакого спектра. Ну разве что в пламени горелки ))). Зато ртутная люминисцентная лампа честно дала много красивых полосок. Вволю налюбовавшись различными источниками света озадачился вопросом, что нужно картинку как то зафиксировать и спектр измерить.

Немного DIY

В голове уже давно крутилась картинка насадки на фотоаппарат, а под столом стоял ЧПУ станочек, не прошедший еще последней модернизации, но вполне успешно справляющийся с ПВХ пластиком.

Конструкция получилась не очень красивой. Все таки люфты по X и Y я победил не до конца. Ничего ШВП уже лежат в сборе и ждут, когда опорные линейные рельсы приедут.

А вот функциональность получилось вполне приемлемой, чтобы радуга отобразилась на стареньком Canon, давно лежащем без дела.

Правда тут меня ждало разочарование. Красивая радуга становилась какой то дискретной.

Всему вина — RGB матрица любого фотоаппарата и камеры. Поигравшись с настройками баланса белого цвета и режимами съемки, я смирился с картинкой. Ведь преломление света не зависит от того, каким цветом фиксировать изображение. Для спектрального анализа подошла бы и черно-белая камера с максимально равномерной чувствительностью по всей ширине измеряемого диапазона.

Методика спектрального анализа.

Путем проб и ошибок нарисовалась такая методика 1. Рисуется картинка шкалы видимого диапазона света (400-720нм), на ней обозначаются основные линии ртути для калибровки.

2. Снимается несколько спектров, обязательно с эталонным ртутным. В серии съемок нужно зафиксировать положение спектроскопа на объективе, чтобы исключить сдвиг спектра из серии снимков по горизонтали.

3. В графическом редакторе шкала подгоняется под ртутный спектр, а все остальные спектры масштабируются без горизонтального сдвига в редакторе. Получается что-то вроде этого

4. Ну а потом все загоняется в программу анализатор Cell Phone Spectrometer из этой статьи

Проверяем методику на зеленом лазере, у которого длина волны известна — 532нм

Погрешность получилась около 1% что при ручной методике подгона ртутных линий и рисования шкалы практически от руки очень даже неплохо. Попутно узнал, что зеленые лазеры не прямого излучения, как красные или синие, а используют твердотельную диодную накачку (DPSS) с кучей вторичных излучений. Век живи — век учись!

Измерение длины волны красного лазера тоже подтвердило правильность методики

Для интереса померил спектр свечки

и горящего природного газа

Теперь можно мерить спектр светодиодов, например «полный спектр» для растений

Спектрометр готов и работает. Теперь буду готовить с его помощью следующий обзор — сравнение характеристик светодиодов разных производителей, дурят ли нас китайцы и как сделать правильный выбор.

Вкратце, полученным результатом доволен. Может быть имело смысл подключить спектроскоп к веб камере для непрерывного измерения спектра, как в этом проекте

Тестирование спектрометра моим помощником

Спектрометр с видеокамерой

Нужно все-таки признать, что делать снимки со смартфона — не совсем удобно. Лучше всего наблюдать за источником света в режиме реального времени. Для этого вместо «глазка» смартфона к пластине необходимо прислонить обычную компьютерную веб-камеру.

Однако для этого варианта спектрометра лучше изготовить более прочный корпус — например, из легкого вспененного ПВХ пластика. Подробный процесс изготовления самодельного домашнего спектрометра можно посмотреть в видеоролике на нашем сайте.

Оцените запись
[Голосов: 2 Средняя оценка: 5]

Создание спектроскопа

Подробности Категория: Фотометрия Опубликовано 20.01.2015 20:24
Спектроскопом называют оптическое устройство для получения, наблюдения и анализа спектра излучения.

Простейшим спектроскопом можно считать призму Ньютона, с помощью которой он открыл спектр видимого света, представляющий собой непрерывную полосу из семи разных цветов, расположенных в последовательности : красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.

Но с помощью своего устройства Ньютон только констатировал, что видимый белый свет состоит из разных цветов, но не мог исследовать параметры цветовых волн.

Как сделать спектрометр из мобильника? Есть простой рецепт

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Войти Регистрация. Спектральный анализ в домашних условиях DIY или Сделай сам Tutorial Друзья приближается вечер пятницы, это прекрасное интимное время, когда под покровом манящего сумрака можно достать свой спектрометр и всю ночь, до первых лучей восходящего солнца мерить спектр лампы накаливания, а когда взойдет солнце померить и его спектр. Как у вас все еще нет своего спектрометра? Не беда пройдемте под кат и исправим это недоразумение. Данная статья не претендует на статус полноценного туториала, но возможно уже через 20 минут после её прочтения вы разложите свой первый спектр излучения.

Калужский изобретатель наблюдает за солнцем и спектром звезд из своего гаража

ВИДЕО ПО ТЕМЕ: ☢ Айзон купил спектрометр [Олег Айзон]
Профессор химии Александр Щилин Alexander Scheeline из Университета Иллинойса сделал из мобильного телефона спектрометр, чтобы увлечь школьников аналитической химией. Профессор собрал основной научный инструмент химика из недорогих материалов и цифровой камеры. Спектрофотометрия является одним из наиболее широко используемых средств для идентификации и определения количества материалов. Если вы хотите научить кого-то творчески использовать инструмент и улучшать его, нужно что-то попроще и понятнее». Это все, что нужно для изготовления спектрометра.

Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку. Если Вы купили что-то полезное, то, пожалуйста, поделитесь информацией с другими.

Американская дозиметрич. Немецкие дозиметрич. Без описания. Поиск в теме Версия для печати. Отправлено: 31 Октября, —

Оно относится только к флюк-туациям артикулированной речи по высоте и темпу и не имеет отношения к несловесным звуковым феноменам. Прозодические единицы иногда называют прозодемами. Для достоверности и полноты записи беседы с больным афазией необходима также регистрация двигательной активности больного, который часто пытается выразить себя в жестах. Очевидно, что жесты являются важным аспектом паралингвистики; они могут быть поражены в значительно меньшей степени, чем артикулированная речь.

Самодельный спектрометр с высоким разрешением

Хорошее разрешение достижимо

В интернете много публикаций о том, как используя DVD-R диск и смартфон можно собрать спектрометр, однако характеристики таких устройств не позволяют проводить точные измерения. Мне же удалось сделать прибор с разрешением 0,3 нм.

Основные характеристики

Спектрометр работает в диапазоне 400-700 нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD-R диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.

Конструкция и изготовление прибора

Дифракционная решетка

Просто красивый спектр свечи на DVD-R диске

Диск был расслоен на две половины и разрезан на части, которые после промывания спиртом были помещены в рамки. Дифракционная решетка готова.

Дифракционная решетка из DVD-R диска

Изготовление сменных оптических щелей

В дюралевой пластине сверлю отверстие диаметром 8 мм. Клеевым пистолетом закрепляю половинку лезвия безопасной бритвы, располагая режущую кромку по центру отверстия. Вставляю в отверстие щуп толщиной 50 мк, плотно прижимаю вторую половину лезвия и приклеиваю ее. Аналогично делаю щели 100 мк, 200 мк и 300 мк. Сменные оптические щели готовы.

Корпус спектрометра

Делаю деревянный корпус. Окрашиваю внутри и снаружи в черный цвет.

Оптика и регистрация спектра — фотоаппарат NIKON D5100

Зеркальная фотокамера NIKON D5100

Примерно на 3000 пикселей матрицы приходится около 300 нм видимого спектра. Т.е. 1 пикселю соответствует 0.1 нм. Для надежной регистрации линии нам нужно два-три пикселя. Расчеты показывают, что для такого разрешения размеры оптической щели должны быть порядка 100 микрон. Было сделано несколько щелей для выбора лучшего варианта экспериментальным путем.

Чтобы получить такое разрешение необходим зеркальный фотоаппарат с хорошим объективом. Смартфон и веб-камера не подходят. Требуется большая апертура и ручные настройки. На данный момент на Авито можно приобрести подходящую камеру по цене от 5 до 10 тысяч рублей.

Настройка и калибровка спектрометра

Калибровка прибора проводилась перед каждой серией экспериментов по известному спектру компактной ртуть содержащей люминесцентной лампы.

Лампа для калибровки

Определение длины волны линий исследуемого спектра возможно без специального программного обеспечения. Ниже спектр лампы с линиями ртути 435,8 нм, 546,0 нм, 577,0 нм и 579,1 нм. Линия 611 это уже Европий.

Спектр лампы с линиями ртути Две линии ртути крупным планом Еще крупнее

Расстояние между линиями 2, 1 нм. Половина ширины линии на кадре не более 0,3 нм, что соответствует примерно 3 пикселям матрицы. Делаем вывод – разрешение прибора 0,3 нм. Что в дальнейшем подтвердится съемкой двойной линии натрия.

Для построения спектральных кривых можно использовать программу сайта Spectral Workbench

Спектр лампы, которую я применял для калибровки

Измерение различных спектров

Были проведены несколько классических экспериментов.

Снят спектр Солнца. Высота 13 градусов над горизонтом. Полдень Спектр от трех лазеров с длинами волн 405 нм, 532 нм и 650 нм Опыты по определению концентраций растворов KMnO4 Спектр пламени газовой горелки

Самый интересный эксперимент, ради которого и был изготовлен спектрометр — измерение спектра пламени костра

На фоне непрерывного спектра была зарегестрированна яркая линия, которую я назвал линией огня.

Обработка результата

Совмещаем спектр калибровочной лампы и исследуемый спектр на одном кадре. Зная расположение известных линий ртути, можно определить искомую длину волны, путем замеров и последующих расчетов.

Слева спектр калибровочной лампы. По центру спектр пламени

Полезные ссылки:

Сайт Spectral Workbench. Используя программы на сайте можно обрабатывать спектры и получать графики интенсивности в зависимости от длины волны.

Информационная система «Электронная структура атомов». Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов.

Спектрометр своими руками в домашних условиях

Спектроскоп — это, как известно, прибор, позволяющий выяснить состав вещества по спектру его излучения.

Направив, например, спектроскоп на люминесцентную лампу дневного света, мы увидим в ее спектре ярко-зеленые, яркие сине-фиолетовые линии и более слабые оранжевые. Они говорят о том, что в колбе лампы присутствует ртуть (сине-фиолетовая составляющая), а также некоторые другие элементы.

В тех случаях, когда сами по себе объекты исследования не светятся, их заставляют светиться, нагревая, скажем, в пламени горелки или пропуская через них сильный электрический ток.

Чтобы сделать простой спектроскоп своими руками понадобятся:

  • CD- или DVD-диск;
  • картонная коробка примерно 20x20x20 см (главное, чтобы в ней поместился диск);
  • два лезвия от безопасной бритвы;
  • небольшая картонная трубка;
  • немного целлофановой ленты;
  • алюминиевая фольга;
  • клей.

Спектроскоп состоит из трех основных частей: щелей, сделанных при помощи бритвенных лезвий, дифракционной решетки из компакт-диска и просмотрового устройства, представляющего собой бумажную трубку.

Установите компакт-диск в верхней части окна, прорезанного в коробке, отступив примерно сантиметр от левого края, и поблизости к нижнему окну, как показано на фото (рис. 2). Отметьте с помощью фломастера или карандаша положение центрального отверстия диска. Эта отметка покажет вам, где в дальнейшем будет проходить бумажная трубка. Теперь разместите ее на коробке таким образом, чтобы нижний ее конец оказался над отметкой, которую вы только что нарисовали.

Нарисуйте еще один круг на поле, обозначив окружность бумажной трубки (рис. 3). Сместите ее на 1 — 2 см и очертите вокруг нее еще один круг. Эти круги подскажут вам, где нужно вырезать овальное окно (рис. 4).

Теперь вырежьте это окно острым ножом (рис. 5). Овал позволит поставить бумажную трубку под некоторым углом к поверхности диска.

Следующий шаг — сделайте разрез. Поверните ящик на четверть оборота так, чтобы овал оказался с правой стороны. Используйте диск еще раз, чтобы сделать еще один небольшой круг ближе к левой части ящика.

Щели будут расположены в крайней левой части ящика. Вырежьте небольшой прямоугольник в стенке коробки на высоте, отмеченной кружком, который вы сделали с помощью диска. Прямоугольник должен иметь ширину около 1 см и высоту примерно 4 см.

Осторожно разверните упаковку лезвий от безопасной бритвы и поставьте два лезвия над прямоугольным отверстием так, чтобы их острые края почти соприкасались друг с другом. Закрепите лезвия скотчем (рис. 6,7).

Открыв ящик, разместите в нем диск поблизости к щели. Прикрепите его скотчем к задней стенке коробки так, чтобы его рабочая сторона была обращена кверху (рис. 8).

Закройте коробку, обеспечьте ее светонепроницаемость с помощью черной бумаги или алюминиевой фольги (рис. 9).

Вставьте бумажную трубку (рис. 10). Алюминиевая лента или фольга сделают уплотнение светонепроницаемым. Чтобы убедиться, что угол, под которым в коробку вставлена смотровая труба, подобран правильно, направьте входную щель на источник света.

Посмотрите через бумажную трубку и подрегулируйте угол ее наклона, чтобы увидеть полный спектр — от красного до фиолетового (рис. 11). Вот и все, спектроскоп своими руками успешно собран.

Теперь, направьте щели на источник света, например, на обычную лампочку накаливания. Прибор покажет простой спектр, неяркие линии.

Это потому, что свет исходит от горячего тела (вольфрамовая нить в лампочке).

Горячий газ неон в лампе дневного света состоит из нескольких цветов, но они расположены в основном в красных и оранжевых частях спектра.

Красный свет светоизлучающих диодов имеет непрерывный спектр, поскольку в них нет горячего газа (рис. 12).


Зеленый свет светоизлучающих диодов и выглядит зеленым. Однако есть источники, которые излучают в желто-зеленой части спектра, а также дают некоторое количество оранжевых и красных линий (рис. 12).


Свет белого светоизлучающего диода на самом деле имеет примесь голубого и так называемого фосфорического.

Диод работает по аналогии с флуоресцентной лампочкой, где синий свет возбуждает люминофоры, чтобы вызвать белое свечение. Поэтому спектр здесь широк.

Самодельный спектрометр с высоким разрешением

Хорошее разрешение достижимо

В интернете много публикаций о том, как используя DVD-R диск и смартфон можно собрать спектрометр, однако характеристики таких устройств не позволяют проводить точные измерения. Мне же удалось сделать прибор с разрешением 0,3 нм.

Основные характеристики

Спектрометр работает в диапазоне 400-700 нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD-R диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.

Конструкция и изготовление прибора

Дифракционная решетка

Просто красивый спектр свечи на DVD-R диске

Диск был расслоен на две половины и разрезан на части, которые после промывания спиртом были помещены в рамки. Дифракционная решетка готова.

Дифракционная решетка из DVD-R диска

Изготовление сменных оптических щелей

В дюралевой пластине сверлю отверстие диаметром 8 мм. Клеевым пистолетом закрепляю половинку лезвия безопасной бритвы, располагая режущую кромку по центру отверстия. Вставляю в отверстие щуп толщиной 50 мк, плотно прижимаю вторую половину лезвия и приклеиваю ее. Аналогично делаю щели 100 мк, 200 мк и 300 мк. Сменные оптические щели готовы.

Корпус спектрометра

Делаю деревянный корпус. Окрашиваю внутри и снаружи в черный цвет.

Оптика и регистрация спектра – фотоаппарат NIKON D5100

Зеркальная фотокамера NIKON D5100

Примерно на 3000 пикселей матрицы приходится около 300 нм видимого спектра. Т.е. 1 пикселю соответствует 0.1 нм. Для надежной регистрации линии нам нужно два-три пикселя. Расчеты показывают, что для такого разрешения размеры оптической щели должны быть порядка 100 микрон. Было сделано несколько щелей для выбора лучшего варианта экспериментальным путем.

Чтобы получить такое разрешение необходим зеркальный фотоаппарат с хорошим объективом. Смартфон и веб-камера не подходят. Требуется большая апертура и ручные настройки. На данный момент на Авито можно приобрести подходящую камеру по цене от 5 до 10 тысяч рублей.

Настройка и калибровка спектрометра

Калибровка прибора проводилась перед каждой серией экспериментов по известному спектру компактной ртуть содержащей люминесцентной лампы.

Лампа для калибровки

Определение длины волны линий исследуемого спектра возможно без специального программного обеспечения. Ниже спектр лампы с линиями ртути 435,8 нм, 546,0 нм, 577,0 нм и 579,1 нм. Линия 611 это уже Европий.

Спектр лампы с линиями ртути Две линии ртути крупным планом Еще крупнее

Расстояние между линиями 2, 1 нм. Половина ширины линии на кадре не более 0,3 нм, что соответствует примерно 3 пикселям матрицы. Делаем вывод – разрешение прибора 0,3 нм. Что в дальнейшем подтвердится съемкой двойной линии натрия.

Для построения спектральных кривых можно использовать программу сайта Spectral Workbench

Спектр лампы, которую я применял для калибровки

Измерение различных спектров

Были проведены несколько классических экспериментов.

Снят спектр Солнца. Высота 13 градусов над горизонтом. Полдень Спектр от трех лазеров с длинами волн 405 нм, 532 нм и 650 нм Опыты по определению концентраций растворов KMnO4 Спектр пламени газовой горелки

Самый интересный эксперимент, ради которого и был изготовлен спектрометр – измерение спектра пламени костра

На фоне непрерывного спектра была зарегестрированна яркая линия, которую я назвал линией огня.

Обработка результата

Совмещаем спектр калибровочной лампы и исследуемый спектр на одном кадре. Зная расположение известных линий ртути, можно определить искомую длину волны, путем замеров и последующих расчетов.

Слева спектр калибровочной лампы. По центру спектр пламени

Что это за линия и как она возникает – читайте в моей статье “Спектральный анализ пламени костра. Что делает огонь желтым – наночастицы углерода или соли натрия?”

Полезные ссылки:

1. Сайт Spectral Workbench. Используя программы на сайте можно обрабатывать спектры и получать графики интенсивности в зависимости от длины волны.

2. Информационная система «Электронная структура атомов». Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов.

Оцените статью