Как проверить igbt транзистор сварочного инвертора?

Каждый раз,покупая IGBT,для ремонта сварочных иверторов,сталкиваюсь с задачей: что купить,где купить что бы не нарваться на фуфло,каждый раз приходится играть в...
Содержание

Как проверить igbt транзистор сварочного инвертора?

Решено IGBT транзисторы,как определить где подделка.

XSERO

Каждый раз,покупая IGBT,для ремонта сварочных иверторов,сталкиваюсь с задачей: что купить,где купить что бы не нарваться на фуфло,каждый раз приходится играть в лоторею с непонятным процентом успеха.Интересует каким методом можно проверить уже купленные IGBT,в интернете очень много всего,но чего то конкретного и практического найти не так то просто. Последняя моя попытка ремонта инвертора,полного моста,закончилась неудачей,вылетели установленные мной новые ключи IGBT на последнем этапе ремонта,когда уже пытался варить. Так как все проверил еще раз,не найдя ничего криминального,решил вскрыть транзисторы IGBT и что я вижу,у тех что я купил GT50JR22 кристал один,подложка тоньше чем в родных 40N60 которые стояли с завода На фото слева на право: RJH60f5 (оригинал) ,40N60 (оригинал), GT50JR22 (те что я купил). Кто как покупает что бы не играть в рулетку,как подобрать аналог,а то на сварочных форумах мнения разные,одни ставят все подряд во все аппараты,другие строго на строго в полные мосты-одни,в полу мосты-другие,в косые мосты-еще какие то.

chignon

  • 1 Авг 2018

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

  • О прошивках

    Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

    На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

    • Прошивки ТВ (упорядоченные)
    • Запросы прошивок для ТВ
    • Прошивки для мониторов
    • Запросы разных прошивок
    • . и другие разделы

    По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

  • Схемы аппаратуры

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Схемы телевизоров (запросы)
    • Схемы телевизоров (хранилище)
    • Схемы мониторов (запросы)
    • Различные схемы (запросы)

    Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

  • Справочники

    На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

    • Справочник по транзисторам
    • ТДКС — распиновка, ремонт, прочее
    • Справочники по микросхемам
    • . и другие .

    Информация размещена в каталогах, файловых архивах, и отдельных темах, в зависимости от типов элементов.

    Marking (маркировка) — обозначение на электронных компонентах

    Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

    Package (корпус) — вид корпуса электронного компонента

    При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

    • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
    • SOT-89 — пластковый корпус для поверхностного монтажа
    • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
    • TO-220 — тип корпуса для монтажа (пайки) в отверстия
    • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
    • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
    • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

  • Краткие сокращения

    При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

    Сокращение Краткое описание
    LED Light Emitting Diode — Светодиод (Светоизлучающий диод)
    MOSFET Metal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
    EEPROM Electrically Erasable Programmable Read-Only Memory — Электрически стираемая память
    eMMC embedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
    LCD Liquid Crystal Display — Жидкокристаллический дисплей (экран)
    SCL Serial Clock — Шина интерфейса I2C для передачи тактового сигнала
    SDA Serial Data — Шина интерфейса I2C для обмена данными
    ICSP In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
    IIC, I2C Inter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
    PCB Printed Circuit Board — Печатная плата
    PWM Pulse Width Modulation — Широтно-импульсная модуляция
    SPI Serial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
    USB Universal Serial Bus — Универсальная последовательная шина
    DMA Direct Memory Access — Модуль для считывания и записи RAM без задействования процессора
    AC Alternating Current — Переменный ток
    DC Direct Current — Постоянный ток
    FM Frequency Modulation — Частотная модуляция (ЧМ)
    AFC Automatic Frequency Control — Автоматическое управление частотой

    Частые вопросы

    После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

    Кто отвечает в форуме на вопросы ?

    Ответ в тему IGBT транзисторы,как определить где подделка. как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

    Как найти нужную информацию по форуму ?

    Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

    По каким еще маркам можно спросить ?

    По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

    Какие еще файлы я смогу здесь скачать ?

    При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

    Полезные ссылки

    Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

    Как проверить IGBT транзистор мультиметром

    Принцип действия

    Работа транзистора построена на изменении сопротивления. Элемент включает коллектор, эмиттер, который принимает на себя напряжение. Когда сигнал поступает на проводник, сопротивление уменьшается. Уровень тока зависит от площади контакта. Эмиттер предназначен для сильных токов, осуществляет переход транзистора. Происходит смещение, цепь открывается. Электронный заряд перебегает на базу.

    Важно! Роль коллектора — усиление слабого сигнала. Увеличение напряжения на выходе происходит постепенно.

    Проверка IGBT модулей (транзисторов)

    Это перевод вырезки, сделанный мной, из официальной документации для IGBT модулей (или как их называют — транзисторов).

    Большинство производителей IGBT модулей полностью тестируют их перед отправкой и гарантируют их соответствие утвержденным параметрическим данным. Обычно мы не рекомендуем пользователям проводить повторные тесты, так как это может повредить радиодеталь. Если Вам все же необходимо произвести проверку, то следуйте нижеуказанным тестам:

    • Всегда используйте безопасный антистатический материал при транспортировке, после тестирования замените токопроводящий пеноматериал на контактах база-эмиттер.¹
    • Никогда не подключайте к эмиттеру напряжение, превышающее значение Vces (указанно в документации для IGBT), а также ни когда не подключайте базу-коллектор к напряжению, превышающему Vges, когда отслеживаете кривую линейных изменений напряжения.
    • Никогда не используйте напряжение больше 20В. для коллектора-эмиттера с открытой базой (с открытым затвором).
    • Избегайте теплового удара. Никогда не кладите холодную деталь на нагревательные приборы. Интенсивность нагрева не должна быть более чем 10Сº/мин.

    Процедура тестирования цифровым мультиметром (ЦММ):

    • Требования к оборудованию – ЦММ с режимом проверки диодов и напряжением батареи менее чем 20В. (Обычно используются батареи с напряжением 9V, например «Крона»).
    • Тест перехода коллектор-эмиттер:
    1. Когда деталь находится вне схемы удалите токопроводящий пеноматериал и замкните базу на эмиттер.
    2. ЦММ в режиме проверки диодов, при подключении положительного полюса относительно эмиттера и отрицательного полюса относительно коллектора, должен дать такие же результаты, как при проверке диодов.
    3. Цифровой мультиметр должен показывать какое-либо значение, если положительный щуп подключен к коллектору, а отрицательный к эмиттеру. Поврежденный IGBT будет замкнут в обоих направлениях (положительном и отрицательном), или открыт в обоих направлениях.
    • Тест оксидного слоя затвора: с помощью цифрового мультиметра, в режиме сопротивления, необходимо замерить сопротивление между затвором и коллектором, а также между затвором и эмиттером, на исправных модулях оно равно бесконечности. На поврежденных IGBT модулях данные выводы могут быть замкнуты или иметь утечку, что покажет наличие сопротивления между затвором и коллектором и/или эмиттером.

    Читать также: Медная руда крупнейшие бассейны

    1) Все IGBT модули отправляются изготовителем с токопроводящим пеноматериалом, на затворе и эмиттере. Никогда не прикасайтесь к выводам затвора во время монтажа и не удаляйте токопроводящий пеноматериал.

    Знаете ли вы, что проверить IGBT транзистор (узнать, годен ли он) можно даже без мультиметра. Простейшая схема для проверки IGBT транзистора не содержит дефицитных или дорогостоящих деталей. Но прежде чем её собирать, откройте datasheet (документ с техническим описанием) конкретной модели IGBT транзистора и внимательно посмотрите на соответствие реальных выводов схематическим. Иными словами, вы должны точно знать, где у IGBT транзистора вывод затвора (обозначается буквой G – Gate), вывод эмиттера (E –Emitter) и вывод коллектора (С – Collector). На рисунке пример для IGBT транзистора FGH60N60SFD

    Обратите внимание, что один из выводов мощных транзисторов обычно соединен с корпусом – именно поэтому, чтобы не допустить замыканий, корпуса транзисторов перед монтажом изолируют специальными термостойкими прокладками.

    Чтобы проверить IGBT транзистор, важно знать, как его правильно подключить! Обратите внимание на полярность!

    1. В правом (по схеме) положении тумблера IGBT транзистор открыт (лампочка светится, если он исправен). 2. В левом — IGBT транзистор закрыт (лампочка НЕ светится, если он исправен). Поклацайте тумблером туда-сюда. Если лампочка не светится – транзистор не пропускает ток. Вероятно, из-за отсутствия контакта внутри корпуса или неправильно собранной схемы! Если лампочка светится постоянно – внутри транзистора произошло короткое замыкание! Такой IGBT транзистор лучше сразу выбросить – при его случайной установке в схему в ней фактически произойдет короткое замыкание, и «полетят» другие детали! Как видите, проверить IGBT транзистор легко даже без мультиметра.

    Купить IGBT транзисторы по самым низким ценам можно —> здесь

    Назначение

    Биполярные транзисторы востребованы в разных отраслях. Больше всего они устанавливаются в блоках питания и в инверторах. Если рассматривать сварочный приборы, они находятся на платах управления. Электротранспорт также не обходится без биполярных компонентов. Электровоз, трамвай управляется за счёт них.


    Трамвай

    Интересно! Бытовые приборы частично содержат элементы. К примеру, IGBT могут встречаться в вентиляционных устройствах, насосах.

    Биполярный транзистор с изолированным затвором

    В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ.

    БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

    IGBT транзистор — это довольно хитроумный прибор, который представляет собой гибрид полевого и биполярного транзистора. Данное сочетание привело к тому, что он унаследовал положительные качества, как полевого транзистора, так и биполярного.

    Суть его работы заключается в том, что полевой транзистор управляет мощным биполярным. В результате переключение мощной нагрузки становиться возможным при малой мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

    Вот так выглядят современные IGBT FGH40N60SFD фирмы Fairchild. Их можно обнаружить в сварочных инверторах марки «Ресанта» и других аналогичных аппаратах.

    Внутренняя структура БТИЗ – это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.

    Упрощённая эквивалентная схема БТИЗ

    Весь процесс работы БТИЗ может быть представлен двумя этапами: как только подается положительное напряжение, между затвором и истоком открывается полевой транзистор, то есть образуется n — канал между истоком и стоком. При этом начинает происходить движение зарядов из области n в область p, что влечет за собой открытие биполярного транзистора, в результате чего от эмиттера к коллектору устремляется ток.

    История появления БТИЗ.

    Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

    Несколько позже, в 1985 году был представлен БТИЗ, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

    Читать также: Какие функции выполняют плавящиеся и неплавящиеся электроды

    Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобнее недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

    Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (Iкэ max), а рабочее напряжение (Uкэ max) может варьироваться от нескольких сотен до тысячи и более вольт.

    Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

    Поскольку БТИЗ имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор — З (управляющий электрод), эмиттер (Э) и коллектор (К). На зарубежный манер вывод затвора обозначается буквой G, вывод эмиттера – E, а вывод коллектора – C.

    Условное обозначение БТИЗ (IGBT)

    На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Также он может изображаться со встроенным быстродействующим диодом.

    KSB31 › Блог › Ремонт сварочника ИСМ-160

    Итак полгода назад в результати экспериментов над сварочником ему поплохело ) выбило два транзистора FGH40N60 и раскололся цементированный ограничивающий ток заряда конденсаторов 15-и ватный резистор. Резистор купил в микронике, транзюки в количестве 4-х штук заказал в Китае, ибо у нас они были только в чипидипе и по неадекватной цене.
    Почти полгода все это пылилось, как то было не до него, ну а щас решил починить. Первым делом был впаян новый резистор, и заменены все 4-е мосфета (несмотря на то что два были живыми). И о чудо все заработало. Вентилятор крутится, на выходных клеммах 60 Вольт. Вот вроде бы оно счастье, но при попытке чиркнуть электродом произошол БАБАХ и снова выгорело тоже плечо…После чего стало понятно что халявы не будет.
    Далее по профильным форумам были начаты поиски схемы. Ближайший аналог оказался некий Китайский MMA ZX7-225. Вот его схемка:

    вот ссылка на полноразмерную картинку перевод китайских надписей примерный гугловский, ну и позиционные обозначения элементов не совпадают, а так по схемотехнике практически один в один.

    Вместо сгоревшего плеча, были впаяны два оставшихся в живых родных транзюка. Далее решил вместо управляющей микросхемы которая завязана на обратные связи и всякие ограничения сделать временную свою схемку выдающую импульсы несмотря ни на что )) (насколько это правильное или неправильное решение я не могу сказать, но мне так удобней)
    была набросана вот такая схемка

    решено было сделать два режима, один статическая выдача высокого по одному каналу и низкого по другому, с преключением каналов, и второй с выдачей импульсов на частоте 40 кГц на которой работает родная микросхема. Для этого решено было использовать два канала ШИМ, один на частоте 80 кГц выдает импульсы изменяемой ширины (меняется кнопками), а второй выдает 40 кГц меандр, при этом этот 40 кГц меандр с помощью несложной логики подключает 80 кГц импульсы то к одному каналу драйвера мосфет/игбт IR4426 то к другому ( в протеусе кстати IR4426 нету, поэтому она съимитирована с помощью двух IR2101 и двух инверторов)

    далее все было реализовано в железе:

    вместо родной микросхемы KA3846 была впаяна кроватка

    и в нее установлена моя приблуда

    В разрыв 310 вольт была установлена лампа на 60 Вт, чтобы в случае сквозных токов мосфеты не умерли.

    Итак после статической проверки вот этого участка

    был включен режим импульсов. Вот такие осциллограммы получились на затворах IGBT транзисторов:

    Вроде как все ок. Далее нагрузил выход 12-и омным 35 ваттным резистором, ток получился 3 А. Ничего нигде не выбило, така резистор в один момент разогрелся и пожег малость пол ).

    Тогда на пробу поставил уже родную микросхему. На ХХ импульсы такие:

    Далее заменил лампочку 60 Вт на одлну галогенку 500Вт, выставил ток 20 А, закоротил отверткой выводы — импульсы на хзатворах стали минимальными, но ничего не сгорело. Собрал без ламп — то бишь штатно все, отвез в грараж сжег одн элекрот 1,6 мм на токе 40 А и одну тройку на 100А.

    Вроде все тьфу тьфу тьфу работает. Но возникает вопрос почему выгорели транзисторы во второй раз? после этого ни один из элементов заменен не был (ну кроме сгоревших транзюков), ведь потренировавшись со своей платой вернулся ко всему штатному.
    Единственное объяснение которое я вижу это то что когда выпаивал родную микросхему феном (так как она была запаяна с двух сторон платы) попутно прогрел все, что рядом и возможно избавился от какой-нибудь «холодной пайки», например резисторов и кондеров задающих dead time. Но с другой стороны сварочнику уже лет 10, почему это не вылезло раньше? Второй это то, что всё отмыл от просто гигантского слоя пыли, часть из которой вполне ведь могла быть металлизированной, ибо сварочник всегда сосед болгарки.
    Хотелось бы услышать мнение специалиста по сварочникам Dominys (поэтому упомяну его тут чтобы он заглянул в эту тему ))

    Ну а вот так теперь выглядит чистенький сварочник

    Ремонт инвертора Telwin 165 своими руками

    В данной статье немного приоткроем завесу над буднями обычного сервисного центра по ремонту сварочной техники. Сегодня вашему вниманию представляем ремонт сварочного инвертора Telwin Force 165. Возможно, ознакомившись с предоставленной информацией, вы сможете устранить некоторые неисправности своими руками. И помните, не беритесь за ремонт, если не уверены в своих действиях, в результате, это всегда обходится дорого.

    Как ни банально это звучит, ремонт начинается с разборки аппарата. Для начала снимается ручка, которая зафиксирована на 4 винтах. Затем откручиваются 2 винта, расположенные на пластмассовой части (держат переднюю и заднюю панель) и 2 винта, которыми зафиксирован корпус по бокам). Также не забудьте снять ручку регулятора тока, потянув ее на себя, потому что она не позволит передней панели инвертора отделиться от общего корпуса.

    Диагностика начинается с поверхностного осмотра платы. Нужно внимательно посмотреть, нет ли перегоревших дорожек, поврежденных элементов и тому подобного. При беглом осмотре сразу видно, что вышел из строя зарядный резистор, который отвечает за плавный заряд конденсаторов.

    Без него будет большой удар в сеть. То, что сгорел зарядный конденсатор говорит о 3 вещах:

    • Битый диодный мост

    • Пробиты электролитические конденсаторы;

    • Силовые ключи – IGBT транзисторы.

    Приступаем к прозвонке

    Начать прозвонку лучше с выходных клемм, таким образом проверяется годность выходного диодного моста.

    • входной мост с обратной стороны платы;
    • диодный мост на предмет КЗ;
    • конденсаторы по высокой стороне;
    • силовые транзисторы IGBT нужно замерять меду стоком и истоком, то есть между коллектором и эмиттером.

    В данном конкретном случае ремонта Telwin Force 165 вышли из строя именно транзисторы.

    Обычно, при выгорании транзисторов выгорают и драйверы. В таком случае транзисторы нужно демонтировать. После демонтажа транзисторов нужно проверить исправность драйверов. Для этого находят сопротивления 15 Ом и звонят их в режиме прозвонки тестера. Если они целы, большая вероятность, что драйвер годный. Если же эти резисторы в обрыве, тогда придется полностью проверить драйвер. Рядом расположены диоды и транзисторы, их проверяют на пробой.

    Перед включением нужно убедиться, что у нас по высокому нет замыкания (что замыкание было действительно в транзисторах). Проверяем на конденсаторах.

    Топология данного инвертора, Telwin 165, это косой полумост. Выходной трансформатор включен между транзисторами. Почему так называется, косой полумост? Транзисторы включены как бы наискось. В другом косом плече моста стоят разрядные диоды. Их нужно прозвонить заранее, потому что при пробое транзисторов очень часто эти диоды тоже пробивает.

    Проверяют также супрессоры – снабберы транзисторов. Они вылетают редко.

    Если КЗ нет, нужно подать питание и осциллографом посмотреть, какой сигнал приходит на транзисторы. Многие ремонтники смотрят на форму сигналов на затворах, но мы рекомендуем от эмиттера до затвора впаивать конденсатор 220 -1000 пФ. Тем самым имитируется емкость затвора и нагружается цепочка драйвера. Таким образом, весь драйвер выходного транзистора думает, что он работает на затвор транзистора. Осциллограмма будет примерно такой, как при работе с реальным транзистором. Без нагрузки все может хорошо показывать, под нагрузкой – мы увидим, какая будет форма.

    Перед подключением питания в обязательном порядке понадобится стоваттная лампочка с двумя проводами. Если вы не опытный ремонтник, вам нужно обрезать дорожку на плате. Дело в том, что вы можете не заметить замкнутый трансформатор, битый снаббер, диоды и т.д. Разрез питающей дорожки вас спасет от дорогостоящего выхода всей силы из строя.

    После любой манипуляции, когда вы включили питание, а потом выключили его, нужно на лампочку разрядить конденсаторы. Напряжение на них смертельное, 310В, может быть даже летальный исход.

    В процессе наладки, между двумя разрезанными дорожками впаивается лампочка, которая ограничивает ток, идущий через выходную часть. И даже если где-нибудь что-то будет не так (занижена частота, пробиты трансформаторы, выход и т.д.), лампочка просто загорится в полный накал, а все остальное останется целым.

    В Telwin Force 165 схема построена следующим образом: как таковая отсутствует дежурка, но … через резистор от сетевого напряжения (310В) заряжаются конденсаторы, которые дают подпитку ШИМу и он короткими импульсами пытается запустить силовую часть. В момент запуска силовой части отвод из силового трансформатора через диод и кренку начинает питать всю схему. Вся схема «заводится» — в этот момент щелкает реле и включается вентилятор. Таким образом производится запуск инвертора, т.е он работает на самоподпитке (не от дежурки). Если вы включили инвертор и щелкнуло реле, завращался вентилятор – это значит, что сила «завелась».

    В конкретной рассматриваемой плате при подаче питания на указанных на фото выводах между эмиттером и затвором должны быть короткие «пачки» импульсов – попытки запуска — примерно раз в одну секунду.

    Для проверки нужно подпаять минусовой щуп осциллографа на эмиттер.

    Важный момент! Напряжение, которое вы подаете, должно быть развязано от сети гальванически, чтобы осциллограф и все остальные приборы, которые вы подключаете, не попали попали под фазу (включая человека, который ремонтирует инвертор).

    Другой щуп осциллографа ставится на затвор и подается питание.

    На экране осциллографа должны появится серия запускающих импульсов. Значит, драйвер, ТГР, и управляющий ТГРом транзистор – все в рабочем состоянии.

    Затем, отключается питание, разряжаются конденсаторы на лампочку и производится переключение на другое плечо.

    Проверяются импульсы на другом плече. С помощью осциллографа вы можете измерить размах посчитать их длительность.

    Запаиваем весь конечный каскад и пробуем его запустить, потому что все работает в штатном режиме, о чем свидетельствует описанная проверка.

    При установке новых силовых IGBT –транзисторов все поверхности алюминиевых радиаторов, к которым они будут прилегать, должны быть идеально чистыми: очищены от любых загрязнений и промыты спиртом.

    Проведите пальцем по радиатору в месте установки транзисторов: не должно быть вкраплений, отверстия под резьбу без заусениц и не должны возвышаться (когда откручивают винт, бывает как-бы «вытаскивают» резьбу из алюминия – получается бугор).

    Нужно убедиться, что на IGBT-транзисторах нет вкраплений, потому что любая песчинка сделает зазор между транзистором и радиатором, соответственно, функция теплоотвода не будет выполняться в полной мере.

    Пасту КПТ-8 (Кремнийоргани́ческая Па́ста Теплопрово́дная) ГОСТ 19783-74, используемую для улучшения теплообмена между мощными электронными компонентами и радиатором, нужно наносить на транзистор исключительно из тюбика. Не нужно выковыривать пасту лопатками из банок.

    Пасту нужно мазать как можно меньшим слоем и только на металлическую часть. При затяжке транзистора она должна едва выйти из-под корпуса. Толстый же слой приводит к деформации транзистора.

    Радиаторы с транзисторами обратно устанавливаются на плату и запаиваются. В технологический разрез дорожки платы, о котором говорилось ранее, впаивается лампочка, после чего подается питание. Должно щелкнуть реле и включиться вентилятор, это значит, что силовая часть запустилась. Если лампочка не горит, это говорит о том, что все работает нормально и ток покоя в норме.

    Нужно проверить выход. На выходных клеммах инвертора должно появиться напряжение. Проводите все работы очень аккуратно, потому что схема в момент проверки находится под высоким напряжением 310В по постоянному току!

    К выходным клеммам подключается небольшая лампочка 40 Вт и если все в норме, она должна загореться – силовая часть в рабочем состоянии.

    Далее плата промывается изопропиловым спиртом от паяльного флюса, восстанавливается «разорванная» дорожка и нагружается на реостат (проверяется выходной ток).

    Регулятор тока выводится на минимум и подключается реостат. Ставятся щупы и снимается напряжение холостого хода. Подключается нагрузка и регулируется ток ручкой инвертора. В данном конкретном случае ремонта ток не регулировался, т.е. был постоянно на максимальном своем значении. Если бы в качестве нагрузки был бы подключен не реостат, а реальный сварочный электрод, при первом же касании о металл этим электродом, вся силовая часть сгорела бы снова, так как инвертор постоянно работает на максимальной своей мощности! Оказывается, изначальная проблема, приведшая к поломке, заключалась в отсутствии регулировки тока. Это говорит о том, что неисправность находится где-то в задающем генераторе. Следствие выбитой силы уже было отремонтировано, а причину – нужно искать.

    За регулировку тока отвечает трансформатор, через который проходит первичная обмотка силового трансформатора. Нужно проверить целостность вторичной обмотки этого регулировочного трансформатора. Операционник LM324 проводит сравнение между установленным положением ручки регулятора тока в одном плече и полученными данными с указанного на фото транса в другом плече.

    Результаты, полученные операционником, подаются на микросхему ШИМ (задающий генератор работы всей силовой части) и от длительности его импульсов зависит выходной ток. Длительность же импульсов задается операционной микросхемой на основании полученных данных между установленной ручкой и тем, что пришло с трансформатора. В данном случае ремонта данная схема не работает. Нужно устанавливать причину.

    Заменой микросхемы компаратора LM324 проблема была решена, а ремонт инвертора завершен. Дальнейшее испытание на реостате показали, что аппарат полностью исправен, а ручка регулировки тока работает, как и положено.

    Источник: Powerful Electronics

    Добавить комментарий Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Проверка электронных компонентов

    После зарядной цепочки, переходим к выпрямительному диодному мосту. Проверка диодов обычно особых проблем не вызывает. Все знают, что исправный диод в прямом направ­лении проводит, а в обратном — не проводит электрический ток. Прямым считается направление, когда к катоду диода приложен минус (-), а к аноду плюс (+) испытательного на­пряжения.

    В зависимости от типа и мощности диода, в прямом направле­нии на диоде падает напряжение 0,1—0,3 В для диодов Шоттки и 0,3—0,7 В для кремниевых диодов. Меньшие значения падающего напряжения соответ­ствуют более мощным и низковольтным диодам, а большие значение — более высоковольтным и менее мощным. В обратном направлении диод ток не пропускает и ведет себя, как оборванная цепь.

    После выпрямительного моста следуют электролитиче­ские конденсаторы сглаживающего фильтра. Конденсаторы не должны иметь внешних механических повреждений и соеди­нительных контактов. Корпуса конденсаторов должны иметь нормальную цилиндрическую форму. Вздутие корпуса конден­сатора, говорит о его неисправности. Электролитические кон­денсаторы, имеющие перечисленные дефекты, необходимо за­менить на аналогичные.

    Конденсатор сглаживающего фильтра инверторного источника имеет значительную емкость, которая обычно находится в преде­лах 470—2000 мкФ. Даже если ваш прибор и позволяет измерять электрическую емкость, то скорей всего, не такую большую.

    Однако нам не требуется точного измерения этой емко­сти. Достаточно убедиться в том, что конденсаторы не оборваны и обладают некоторой емкостью.

    Как ни странно, внутренние обрывы сглаживающего кон­денсатора не являются редкостью. Это происходит достаточно часто при обрыве зарядного резистора. К примеру, на источни­ках ВДУЧ-160 в качестве зарядного используется проволочный резистор, который обрывается после пребывания сварочного источника на небольшом морозе. В результате, после несколь­ких включений без предварительной зарядки, конденсаторы сглаживающего фильтра приходили в негодность.

    Перед проверкой конденсатора необходимо убедится в том, что он полностью разряжен. Для этого, на 10-20 с нужно закоротить выводы конденсатора с помощью резистора МЛТ-2 сопротивлением 100 Ом.

    Для проверки функциональности конденсатора достаточно с помощью мультиметра перезарядить его в обоих направле­ниях. Для этого, с помощью мультиметра, находящегося в ре­жиме проверки диодов, необходимо «прозвонить» конденсатор сначала в прямом направлении, а затем в обратном. Если кон­денсатор исправен, то при этом мы будем наблюдать процесс его перезарядки длительностью в несколько секунд.

    Перезарядка проявляется в плавном изменении на нем ве­личины и полярности напряжения, при каждом изменении на­правления зарядки. Оборванный конденсатор ни как не реаги­рует на смену полярности подключения к мультиметру.

    При внешнем осмотре транзисторов преобразователя, необ­ходимо убедиться в том, что они не имеют дефектов корпуса и выводов. Обычно в преобразователях современных инверторных сварочных источников используются MOSFET или IGBT тран­зисторы. Транзисторы MOSFET имеют внутренний паразитный диод подложки, подключенный катодом к стоку транзистора, а анодом — к истоку. Соответственно, этот диод прекрасно «про- званивается» между стоком и истоком транзистора. Однако ис­правность этого диода не гарантирует того, что транзистор также исправен. Например, у транзисторов MOSFET с пробитым затво­ром паразитные диоды обычно нормально «прозваниваются». Поэтому, чтобы гарантировать исправность транзисторов, их необходимо проверить, предварительно выпаяв из схемы.

    В отличие от диодов и конденсаторов, MOSFET и IGBT тран­зисторы преобразователя требуют более сложного алгоритма проверки. Рассмотрим, для примера, алгоритм про­верки IGBT транзистора, который во многом справед­лив и для MOSFET. Перед тем, как приступить к про­верке транзистора, необ­ходимо воспользоваться справочником, чтобы опре­делить его расположение выводов. Для примера, на рис. 1.8 приведено типич­ное расположение выводов IGBT, расположенного в корпусе ТО-247АС.

    Рис. 1.8 — Расположение выводов IGBT в корпусе ТО-247АС

    Шаг 1. Необходимо убедится в отсутствии коротких за­мыканий между затвором и эмиттером IGBT (затвором и истоком MOSFET), прозвонив сопротивления между со­ответствующими выводами в обоих направлениях.

    Шаг 2. Необходимо убедится в отсутствии коротких за­мыканий между коллектором и эмиттером IGBT (истоком и стоком MOSFET), прозвонив сопротивления между со­ответствующими выводами в обоих направлениях. Перед этим необходимо перемычкой закоротить выводы затвора и эмиттера транзистора. Но лучше будет не закорачивать затвор и эмиттер транзистора, а просто зарядить входную емкость затвор-эмиттер отрицательным напряжением. Для этого кратковременно и одновременно прикасаемся щупом «СОМ» мультиметра к затвору, а щупом «У/Ω/f» к эмиттеру.

    Некоторые IGBT транзисторы, как и MOSFET, имеют встроенный встречно-параллельный диод, подключенный катодом к коллектору транзистора, а анодом к эмит­теру (рис. 1.8). Если транзистор имеет такой диод, то последний должен соответствующим образом прозвониться между эмиттером и коллектором транзистора.

    Шаг 3. Теперь убедимся в функциональности транзи­стора. Для этого необходимо зарядить входную емкость затвор-эмиттер положительным напряжением. Для это­го кратковременно и одновременно прикасаемся щупом «V/Ω/f» мультиметра к затвору, а щупом «СОМ» к эмитте­ру. После этого проверяем состояние перехода коллектор-эмиттер транзистора, подключив щуп «V/Ω/f» мультиме­тра к коллектору, а щуп «СОМ» к эмиттеру. На переходе коллектор-эмиттер должно падать небольшое напряже­ние величиной 0,5—1,5 В. Меньшее значение напряжения соответствует низко­вольтным транзисторам, а большее высоковольтным.

    Величина падения напряжения должна быть стабильной, по крайней мере, в течение нескольких секунд, что говорит об от­сутствии утечки входной емкости транзистора.

    Иногда напряжения мультиметра может не хватить для того чтобы полностью открыть IGBT транзистор (характерно для высоковольтных IGBT). В этом случае входную емкость тран­зистора можно зарядить от источника постоянного напряжения величиной 9—15 В. Зарядку лучше производить через резистор величиной 1—2 кОм.

    Проверенные и исправные транзисторы необходимо устано­вить на место. Предварительно место установки очищается от следов старой теплопроводной пасты при помощи растворителя. Затем наносится слой свежей теплопроводной пасты и транзи­стор, при помощи штатных средств, прижимается к охладителю.

  • Оцените статью