Резонансный трансформатор из сварочного аппарата

Цитата: Владимир от 26.10.2013, 11:59:42А счетчик при этом покажет и более низкий косинус фи при фактическом АКТИВНОМ потреблен...

Резонансный трансформатор из сварочного аппарата

  • Начало
  • Вход
  • Регистрация
  • DVD Free Energy!
  • Помощь сайту
  • Мы ВКонтакте
  • Правила
  • Форум о Свободной Энергии x-F.A.Q. »
  • Свободная энергия (Free Energy) такая, какая она есть — альтернативные источники энергии будущего »
  • Резонансные генераторы и трансформаторы »
  • Тема: Трансформатор (усилитель мощности) Аркадия Степанова

Трансформатор (усилитель мощности) Аркадия Степанова

Изобретение 32-летнего орчанина Аркадия Степанова поставило в тупик научный мир. Принцип работы придуманного им устройства противоречит официальным физическим парадигмам. «Что мне прикажете — съесть свой диплом?» — только и сказал один из инженеров, приглашённых на демонстрацию прибора. Изобретение 32-летнего орчанина Аркадия Степанова поставило в тупик научный мир. Принцип работы придуманного им устройства противоречит официальным физическим парадигмам. «Что мне прикажете — съесть свой диплом?» — только и сказал один из инженеров, приглашённых на демонстрацию прибора.

Ньютону озарение пришло в виде яблока, свалившегося на голову, Менделеев увидел свою таблицу во сне, а наш земляк свой усилитель придумал, слушая лекцию в индустриальном колледже. Любимой дисциплиной Аркадия были «Электрические машины». Здесь студенты вдоволь могли поковыряться в двигателях, генераторах, трансформаторах. Как-то раз, слушая преподавателя, который рассказывал про активную и реактивную энергии (последняя, как ненужный балласт, всегда сопутствует первой), Аркадий подумал: а как было бы здорово эту бесполезную энергию пустить в дело, сделать полезной! Парня так увлекла эта идея, что он посвятил ей и дипломную работу, и всё свободное время. На долгие годы его комната оказалась завалена железками, катушками, проводами.

Прошло двенадцать лет. Аркадий — повзрослевший, уверенный в себе, оптимистичный, но в то же время сдержанный, — встречает меня у входа в помещение, куда временно перебазировалась его лаборатория. Вот уже два года он целенаправленно занимается продвижением своего детища. За это время удалось получить два патента. Однако основной документ — на всё изобретение целиком — он рассчитывает получить в течение этого года.

Наш разговор начинается с демонстрации устройства. Аркадий включает в сеть простейшую цепь, состоящую из большой лампы накаливания и счётчика, который показывает, сколько энергии лампа берёт из сети (500 Вт). Потом в эту цепь Аркадий добавляет ещё одно звено — изобретённый им резонансный усилитель. Что меняется? Лампа горит также ярко, а вот показания счётчика стали значительно ниже — на табло значение 42 Вт.
— Прибор усиливает потребляемую мощность в несколько раз, при этом не нуждаясь в дополнительных источниках энергии. В его основе — несколько физических процессов, в том числе резонансное явление, с помощью которого мне и удалось преобразовать реактивную энергию в активную, — рассказывает Аркадий.
Его изобретением уже заинтересовалась Российская академия наук. Действие прибора видели и местные представители научного мира, бизнеса, промышленности. В основном реакция такая: «так быть не может, что-то здесь не то!»

Дело в том, что резонансный усилитель Степанова нарушает один из основных постулатов физики — закон сохранения энергии, который (говоря простым языком) гласит: количество поступившей энергии равно количеству энергии выделенной. Просто так, из ниоткуда, энергия не берётся. Идею «вечного двигателя» профессора и академики давно заперли в чулан лженауки. Вытащить её оттуда оказались не в состоянии ни японский музыкант Кохеи Минато, который изобрёл магнитный двигатель, удививший весь мир (48 патентов в разных странах, включая Россию), ни грузинский изобретатель-самоучка Тариэл Капанадзе, сконструировавший безтопливный генератор. Что интересно, оба изобретателя далеки от электротехники. Минато — музыкант, Капанадзе — архитектор. Наверное, на них не давил груз законов, описанных в учебниках физики, и они были смелее в своих начинаниях.

У Аркадия образование электротехническое. Несколько лет назад он был главным энергетиком одного из крупных промышленных предприятий Орска. Но всё равно он столкнулся с трудностями при теоретическом изложении принципа работы своего прибора.

Изобретение считается патентоспособным, если оно созвучно принципам и аксиомам традиционной науки. А усилитель Степанова в эти рамки не вписывается: коэффициент полезного действия (КПД) у него больше единицы. В академическом понимании такого быть не может. Неудивительно, что первую заявку на патент Аркадию «завернули». Но тот не унывал. Посоветовался с умными людьми, оброс группой сподвижников, и вновь кинулся на штурм твердыни официальной науки.

Аркадию Степанову нужны доказательства полезности прибора — успешныепроизводственные испытания, подтверждённые протоколами, мнением авторитетной комиссии. Один из друзей Аркадия согласился предоставить в качестве экспериментальной площадки свою мебельную фабрику. Не побоялся рискнуть дорогим импортным оборудованием. Сейчас промышленный образец резонансного усилителя размером с полхолодильника, работает в одном из цехов. Результаты уже впечатляют. Но с выводами Аркадий спешить не хочет.

Пока одни всячески помогают молодому изобретателю, другие норовят его идею стащить. По словам Степанова, кое-кто уже пытается получить патент на такое же устройство. Из-за опасения потерять приоритетность, Аркадий включил красный свет предложениям потенциальных инвесторов. Пока его интеллектуальная собственность не защищена, он старается не вступать в подробные переговоры.
К слову, интерес к резонансному усилителю уже проявили такие известные фирмы, как «Зингер», американская компания «Тесла-роджерс», автомобильный гигант «Шкода». Последний готов даже профинансировать поездку орчан в Чехию, чтобы те провели демонстрацию прибора.

P.S. В перспективе Аркадий Степанов и его соавтор Владимир Хорьяков собираются заняться созданием электромобиля, который от прочих подобных машин будет отличаться более высокими техническими характеристиками.

Татьяна Бубликова

Резонансный усилитель мощности, Автор Степанов А.А.
Это запись из новостей Орска. Самые первые демонстрации устройства.

Сварочный инвертор(200 А) — резонансный мост с частотным регулированием.

Силовая часть с драйверами.



Резонансный мост – это одна из разновидностей двухтактных преобразователей инверторного типа. Во время первого такта открыты транзисторы (далее ключи)VT1 и VT2, во время второго – VT4 и VT5. Такты отличаются полярностью подачи высокого напряжения (приблизительно 300В) в резонансную цепочку, состоящую из конденсатора C17, сварочного трансформатора T1 и дросселя L1. Для безопасной работы ключей инвертора между тактами необходима пауза (DeadTime). В сварочном инверторе частота преобразователя должна быть такой, чтобы ёмкость С17, индуктивность L1 + индуктивность нагруженного на дугу трансформатора образовывали контур, в котором на этой частоте происходит резонанс напряжений. При этом мощность в нагрузке максимальна. При коротком замыкании в сварочной цепи этот резонанс уходит, как бы ограничивая ток короткого замыкания. Подстраивая частоту инвертора можно добиться максимальной мощности в дуге. С увеличением частоты ток в контуре начинает ограничиваться реактивным сопротивлением дросселя L1 и ток в дуге понижается. Таким образом, один раз настроив резонансную частоту (читай, частоту при которой в контуре с трансформатором, нагруженным на дугу, в дуге максимальная мощность) можно изменять значение сварочного тока, увеличивая частоту инвертора относительно резонансной.

При включении инвертора в сеть через пусковой резистор R1 и спаренный выпрямитель VD6-VD13 заряжаются ёмкости С3 и C4. Как только ёмкости зарядятся до напряжения 200-250В включиться реле K1, и своими контактами зашунтирует резистор R1. Ёмкости дозаряжаются до напряжения приблизительно 300 В. C этого момента высоковольтная часть инвертора готова к работе.

В своём сварочном инверторе для управления мощными IGBT-транзисторами, я применил специализированные драйверы фирмы IR. Драйверы верхних ключей получают питание от бустпретных ёмкостей С5 и C8. Эти ёмкости периодически подпитываются через диоды VD14 и VD19 в моменты открытия нижних ключей. Здесь верхними (условно) ключами называю те транзисторы, коллекторы которых соединены с плюсом силового питания 300 В. У нижних ключей эмиттеры соединены с минусом силового питания 300 В.

Для согласования ТТЛ уровней микроконтроллера с уровнями входов LIN и HIN драйверов (не менее 9 В) служат элементы R2, R9, VT3, VT6. Резисторы R8 и R14 обеспечивают неактивный режим драйверов во время “пусковой распутицы” микроконтроллера.

Удвоитель напряжения собран на элементах VD23, VD26, VD27, С15, C16, С11 и служит для облегчения зажигания дуги. Программой микроконтроллера непрерывно отслеживается состояние выхода сварочного инвертора. При коротком замыкании на выходе светодиод оптопары U1 потушен и на входе UOut будет высокий логический уровень. Для защиты от пробоя силовых элементов схемы неизбежными выбросами напряжения служат так называемые снабберы и сапрессоры VD17, VD18, VD22, VD28, С13, C14, R19, R21, а также ограничитель “раскачки” R20.

Ключи желательно припаять к медной подложке. О том как это сделать написано здесь.

Микроконтроллерный блок управления с блоком питания.


Прошивка микроконтроллера PIC16F628-20I/P

Мотая трансформатор нужно обеспечить хорошую межобмоточную изоляцию. В моей конструкции все обмотки намотаны медным проводом в лаковой изоляции диаметром 0,2 мм. При подключении трансформатора необходимо правильно соблюсти фазировку обмоток, иначе флайбэк работать не будет. Подборкой сопротивления резистора R1, добиваемся напряжения на выходе 12,5 В. Это напряжение используется для питания драйверов. Микроконтроллер получает питание через параметрический стабилизатор КР142ЕН5А.

Работа программы и настройка резонансной частоты.

Целью настройки резонансного моста является настройка резонансной частоты. Здесь и далее резонансной частотой буду называть ту частоту инвертора, при которой в дуге максимальная мощность.

При включении устройства в сеть светодиод потушен и звучит сигнал. Затем, если контакты термостатов замкнуты, запускается инвертор на резонансной частоте. Значение резонансной частоты считывается из нулевой ячейки EEPROM. При первом включении резонансная частота будет 30 кГц. Как только напряжение в сварочной цепи превысит 12 В (короткого замыкания нет) на проводе UOut возникнет низкий логический уровень и инвертор перейдёт в рабочий режим.

В рабочем режиме горит светодиод, звуковой сигнал выключен. Проверяется положение потенциометра. Вращение движка потенциометра приведёт к изменению рабочей частоты инвертора. Рабочая частота меняется ступенями (всего 17 положений) от резонансной (минимальной) до максимальной. Изменение рабочей частоты сопровождается коротким звуковым сигналом. При этом максимальному сварочному току соответствует минимальная частота (она же резонансная). Увеличение частоты приводит к уменьшению тока в дуге. Таким образом, вращая потенциометр можно регулировать ток в дуге.

При коротком замыкании в сварочной цепи и работе инвертора на частоте выше резонансной существует опасность “словить” резонанс в коротком замыкании. Вероятность, конечно мала, но стоит перестраховаться, поскольку резонанс в коротком замыкании – это верная смерть ключей инвертора! С целью защиты “от смерти” в рабочем режиме периодически проверяется логический уровень на выводе UOut детектора короткого замыкания в сварочной цепи. Если таковое имеется, то на входе UOut появится высокий логический уровень и инвертор начнёт работать на резонансной частоте независимо от положения движка потенциометра. При этом светодиод потушен. Если в течение 1 секунды не произойдёт повышения напряжения в сварочной цепи, то работа инвертора блокируется, и программа начнёт выполняться сначала. Так выполняется функция антизалипания электрода.

Если во время работы произойдёт аварийное отключение одного из термостатов TS1 или TS2, то работа инвертора блокируется, включается прерывистый звуковой сигнал и начинает мигать светодиод. Как только температура понизится, и оба термостата будут включены, работа инвертора возобновиться.

Настройка резонансной частоты.

Перед подачей силового питания на ключи запускаем блок управления. Временно устанавливаем перемычку между проводом UOut и минусом. Осциллографом проверяем управляющие импульсы на затворах ключей. Там должны быть прямоугольные импульсы частотой 30 кГц. Если всё так и есть, включаем в сварочные провода мощный реостат сопротивлением 0,15 Ом (для токов 170-200 А) и шунтируем контакты реле. Подаём питание на блок управления. Силовое питание запитываем через ЛАТР. Поднимая напряжение на ЛАТРе, следим за увеличением напряжения на реостате. Если всё нормально, устанавливаем на ЛАТРе 80-120В и начинаем настройку.

Чтобы войти в режим изменения резонансной частоты необходимо нажать и удерживать обе кнопки до включения звукового сигнала. После отпускания кнопок, звуковой сигнал выключается, и светодиод начинает часто мигать, что свидетельствует о переходе в режим редактирования резонансной частоты. При этом инвертор начинает работать на резонансной частоте. Кликая кнопками изменяем частоту инвертора и добиваемся максимального напряжения на реостате. Если резонансная частота находится ниже 30 кГц, то увеличиваем немагнитный зазор в дросселе. Если резонансная частота выше 42 кГц, то зазор в дросселе следует уменьшить. Как только резонансная частота подстроена на максимальную мощность, можно произвести запись значения резонансной частоты в EEPROM. Для этого кликаем одновременно на обе кнопки. После продолжительного звукового сигнала произойдёт запись.

Восстанавливаем схему инвертора, удаляем перемычку с провода UOut, отключаем реостат. Включаем инвертор в сеть. Должно включиться реле и загореться светодиод. Потенциометром выставляем минимальную частоту (она же резонансная). Кратковременно нагружаем инвертор реостатом 0,15 Ом и замеряем на нём напряжение. Если это напряжение составляет 22-30 В, то можно Вас поздравить с успешной настройкой! Держак в руки и вперёд!

Если напряжение меньше 22 В, то нужно увеличить зазор в дросселе и повторить настройку сначала.

Конструкция, схемы и особенности работы трансформатора Седого Мишина для отопления

Трансформатор Седого Мишина для отопления является аналогом тороидальной катушки Тесла, запатентованной в конце 19-го века. Подобное оборудование нашло практическое применение в некоторых электродвигателях, радиоприемниках (антеннах), электрошокерах, для розжига газоразрядных ламп, определения течи в вакуумных системах, создания высоковольтных разрядов, используемых в индустрии развлечений. В сети интернет утверждают, что высокое напряжение, создаваемое в трансформаторе Седого Мишина (Тесла) можно использовать, чтобы устроить отопление.

Теоретически это возможно, на практике сложно из-за быстрого выхода из строя вторичной обмотки.

  1. Конструкция тороидального резонансного трансформатора
  2. Принцип работы резонансного трансформатора
  3. Как использовать резонансный трансформатор в системе отопления
  4. Стоит ли делать такой трансформатор самостоятельно

Конструкция тороидального резонансного трансформатора

Резонансный преобразователь в классическом исполнении не имеет сердечника, катушки тороидальные (простым языком – круглые, в виде бублика), состоит из 2-х обмоток и прерывателя (разрядчика). На первичной обмотке 3-10 витков, она выполнена из толстого медного провода. Вторая катушка высоковольтная, выполнена из тонкого провода, витков может быть от сотни до тысячи. Для функционирования в схему включаются конденсаторы, накапливающие заряд.

Первичная катушка бывает плоская, коническая, цилиндрическая, вертикальная, горизонтальная. Колебательный контур создается первичной обмоткой и конденсатором, разрядчик – это 2 электрода, размещенные на определенном расстоянии друг от друга. Второй контур образует вторичная катушка и тороид (замещает конденсатор). В процессе создания контуров важно добиться резонанса частот колебания – без него ток не повышается.

Если создавать резонансный преобразователь с применением сердечника, то необходимо соблюдать определенные требования. Магнитопровод не должен быть цельный, на каждой заизолированной части тора (круга) размещается отдельная обмотка, обмотки разделяются заземленным экраном.

Самая простая схема выглядит так (у трансформатора Мишина очень похожая):

Первичная обмотка трансформатора Седого из толстого провода или трубки подключается к конденсатору и разрядчику (электродам, оснащенным системой охлаждения). На вторичной катушке, покрытой эпоксидкой или лаком, тонкий провод, количество витков зависит от сечения. На выходе острый штырь, сфера или диск (форма зависит от типа разряда).

При изготовлении трансформатора Мишина своими руками необходимо учесть, что очень важно качество вторичной обмотки. Отношение между длиной и диаметром 4/1, провод должен быть намотан плотно, без скрещиваний.

Сопротивление первичной катушки должно быть минимальным, заземление экрана обязательно.

Принцип работы резонансного трансформатора

В любом трансформаторе при подаче переменного напряжения на первичную катушку создается магнитное поле, которое передается вторичной обмотке. На ней магнитное поле превращается в напряжение (пониженное или повышенное по сравнению с показателем на входе). Результат зависит от уровня резонанса между обмотками, качества связи между катушками, прочности вторичной обмотки.

После подключения к сети первичная катушка генерирует колебания высокой частоты, конденсатор накапливает напряжение до уровня пробоя. Пробой – это короткое замыкание, напряжение может достигать сотен киловатт. Это реактивное напряжение, которое создается в любом преобразователе и чаще всего не используется. Эффект увеличивается за счет отсутствия минимальной взаимоиндукции, обеспеченной отсутствием сердечника.

При наличии резонанса между катушками коэффициент трансформации может в несколько десятков раз превышать значение отношения количества витков вторичной катушки к количеству витков первичной. Самое простое применение – создание разряда в воздухе, что и используется в индустрии развлечений. Эффект увеличивается внесением в область разряда красителей, меняющих цвет.

Если напряжение на входе достаточно высокое, длина такой «молнии» составляет десятки метров.

Как использовать резонансный трансформатор в системе отопления

Резонансный трансформатор Мишина способен увеличить мощность в 10 раз. По сути, эта реактивная мощность, созданная стоячими электромагнитными волнами, которую можно снять на какое-то оборудование.

Если использовать несколько таких преобразователей, мощность увеличивается в сотни раз. Теоретически это можно использовать, в том числе в системе отопления, чтобы сэкономить электроэнергию.

Максимальный эффект от резонанса возможно получить, если увеличить добротность (отношение тока в реактивном компоненте к току в активном компоненте) второго контура в 30-200 раз. Через реактивную емкость и индуктивность при этом будет протекать реактивный ток, многократно превышающий ток на входе. Обычно он остается в контуре из-за противофазности. То есть, фазы компенсируют друг друга, но создают магнитное поле. Этот эффект уже используется в электрических двигателях, эффективность в которых зависит от степени резонанса.

Нельзя резонансный контур построить из материалов, которые просто попались под руку, его нужно осознано строить. Только тогда из сети будет забираться несколько ватт, а реактивная энергия будет большая. Ее можно перенести на односторонний трансформатор или отопительный котел.

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в резонансном контуре ток величиной в 70 Ампер.

По закону Ома, мощность цепи индуктивности при переменном токе в преобразователя Седого должна быть:

I = U /R, где R – сопротивление намотки.

L – индуктивность намотки (измеряется в Генри);

f – частота (в бытовой сети 50 Гц).

Это значит, что мощность:

I = U / 2πfL, а индуктивность:

L = U / 2πfI = 220 вольт / 2*3,14 * 50*70 = 0,010 H (Генри).

То есть, чтобы получить 70 А, индуктивность должна быть 0,010 H.

Емкость конденсатора (закон Томсона):

f = 1 / (2π*√ (L*C)) = 1 / (4*(3,14*3,14) * 0,01 H * (50 Гц*50 Гц)) = 0,001014 F (1,014mF)

Потребление от сети 220 В будет 6,27 Вт.

Мишин использовал для создания вторичной намотки бифиляр статора из электродвигателя. Для удобства вырезал выступы, витки не считал, наматывал сразу 2 провода с сечением 1 мм до полного заполнения бифиляра, для ограничения мощности сети использовал лампу накаливания, на входе напряжение 70 В. Первичная намотка – один виток медной трубки.

Достоверных и точных данных о том, как такое самодельное устройство использовать для отопления, на самом деле нет. Хотя общеизвестно, что по такому принципу работают вихревые индукционные нагреватели.

Стоит ли делать такой трансформатор самостоятельно

Трансформатор Седого Мишина, по сути, является так называемым генератором свободной энергии. Сделать его своими руками можно.

Стоит ли делать такое у себя дома, каждый решает сам. В интернете есть видео, на котором видно, как подобное устройство нагревает воду в ведре. Некоторые утверждают, что используют для создания световых эффектов в домашних условиях.

Однако не стоит забывать, что резонансный преобразователь отрицательно воздействует на организм человека, в частности на нервную систему, сердце и глаза. При разряде нельзя исключить вероятность ожогов. Женщинам и детям не желательно находится поблизости от подобного устройства из-за сниженной сопротивляемости организма. Поэкспериментировать можно, если есть желание и свободное время, но в отдаленности от членов семьи.

Резонансный трансформатор из сварочного аппарата

Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.

  • Главная
  • Каталог самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Форум
  • Обратная связь
  • Лучшие самоделки
  • Самоделки для дачи
  • Самодельные приспособления
  • Автосамоделки, для гаража
  • Электронные самоделки
  • Самоделки для дома и быта
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Самоделки для рыбалки
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для компьютера
  • Самодельные супергаджеты
  • Другие самоделки
  • Материалы партнеров

Инструкция для желающих потрогать ферро-резонанс «своими руками»

Для успешных испытаний нужен трансформатор с быстро разбираемым железом марки ОСД или ему подобные мощностью 100…300 Вт. Подходят от старых ламповых телевизоров. Удобны в работе трансы стержневого типа (две обмотки на разных стержнях). Разобранный транс мощностью 150 Вт такого типа смотри фото удобство в быстрой смене катушек на новые или перемотка старых. Но и трансы броневого типа дадут такой же результат.

Для приведенного описания взят транс 150 Вт сердечник стержневого типа, на котором по обе стороны две катушки. Левая половина сетевой обмотки (130 вольт сопротивлением 7,7 Ома). Диаметр провода 0,5 мм, сечение 0,2 мм кв., индуктивность 0,2 Гн, такая же обмотка с правой стороны использовалась для подключения нагрузки лампы накаливания 220в на 100ват. Замеряем величину индуктивности резонансной катушки. Прибор любого производителя. Если не известно напряжение обмоток а их много вбирают ту, у которой наибольшая индуктивность (будет меньше емкость а значит дешевле). По замеренной индуктивности и рабочей частоте найдем реактивное сопротивление обмотки. Индуктивность 0,2 Гн, частота 50 Гц по сопротивлению емкость резонансного конденсатора:

Можно ставить расчетный, но чтобы попасть в насыщение сердечника емкость увеличивают на 15…20 % (поясню ниже). Теперь мы готовы к сборке схемы. Смотри рисунок съем мощности с дросселя. Включаем латер и плавно увеличивая напряжение смотрим на лампу. При входе схемы в резонанс яркость лампы увеличивается скачком. Это контур вошел в резонанс и начал черпать из гравитационного поля земли или по Мельниченко из магнитопровода. Но нам, строителям вечняка, сейчас по барабану, где он ее черпает. Главное побольше. Теперь можно крутить латер в сторону уменьшения и лампа будет гореть с постоянным свечением до определенного момента а потом скачком погаснет. Схема вышла из резонанса. Не спешите искать халяву, поработайте на разных режимах измерьте токи и напряжения в разных точках попробуете разные емкости. В общем, почувствуйте схему. Но долго работать со схемой не получится, т.к. дроссель перегревается и дымит. И чем больше насыщение сердечника, тем быстрее нагрев. Трансформатор (дроссель) не рассчитан на работу в резонансном режиме. На форуме Сергей пишет у него нет нагрева. Давайте прервемся и попробуем разобраться. Построим вольт амперную характеристику (ВАХ) контура. Для этого совместим на одном графике ВАХ дросселя и ВАХ емкости. Подключают дроссель к латеру и, меняя напряжение на дросселе и замеряя ток, для каждой точки строим ВАХ характеристику достаточно 4…6 точек. На практике выглядит так. К латеру подключают только дроссель и увеличивая напряжение с шагом 20… 30 В строят ВАХ. До начала насыщения дроссель работает тихо и токи малы на этом участке характеристика линейна и тут хватит двух точек, при подходе к точке насыщения появляется легкий гул и заметно возрастает ток тут тоже поставить одну точку далее уверенно гудит ток растет быстрее напряжения тут тоже хватит двух трех точек после все точки соединяем плавной кривой (L на рис 6).

По этому графику легко найти величину емкости для резонанса(точка тр на рис. 6) или с помощью латера построить на этом же графике ВАХ кондера хватит двух точек так она линейна. (50мкф на рис. 6) по разности напряжений ВАХ дросселя и кондера строится результирующая ВАХ резонансного контура (Красная кривая на рис. 6) по этой характеристике видно как на карте точки входа схемы в резонанс(Т2 рис. 6) выхода из него (Т3 рис.6) токи при которых схема работает в резонансе(от т4 до т3), короче не проводя глобальных расчетов можно найти любой параметр. На рисунке 6 ВАХ для моего транса. Точка нн начало насыщения сердечника. Точка тр пересечение характеристик катушки и емкости линия резонанса.

При напряжении Uр=85 В вход в резонанс скчком из т2 в т4 ток при этом подпрыгивает с 0,8 до 3,4 Ампера. А дроссель расчитан на 1А куда идет лишка – в нагрев. То есть для нормальной работы дросселя нужно увеличить сечение провода. Теперь уменьшим емкость резонансного конденсатора до 30 мкф. Рис 9.

ВА смещается к началу насыщения сердечника а прыжек тока уменьшается до 2 А. при дальнейшем уменьшении емкости система может не войти в резонанс или резонанс будет неустойчив. При увеличении емкости картина будет противоположной (см график емкость 90 мкф).

Выбирай но осторожно. думаю понятно имея характеристики разных катушек и емкостей можно высчитать поведение контура даже не включая его в розетку.

Соберем схему резонанса напряжений с отбором нагрузки со вторичной обмотки. В качестве нагрузки удобно использовать лампы накаливания ват по 20…40 увенчивая мощность параллельным включением. Дешево а главное наглядно. Введем схему в резонанс при 85 В т4 рис 6. И начнем увеличивать нагрузку. И вот он катаклизм и парадокс. Нагрузка растет а мощность потребления контуром падает. Контур движется из т4 в т3 и далее выход из резонанса

Нагрузку можно воткнуть и в параллельный контур (резонанс токов). Результат будет аналогичный только прыжок не по току а по напряжению. контур надо питать источником тока. Подойдет или мощный реостат или емкость в виде баластника.

Все графики сделаны по реальным испытаниям резонанса проведены 2005 г. при разных значениях емкостей 45,50,90 мкф. Поэтому любой параметр ток или напряжение можно взять из графика. При нагрузке сто ват (схема на фото) Из розетки тянет восемьдесят. И это на стандартном трасе. Думаю что проще уже некуда. Фото сделал вчера. Собрал на скорую руку, благо транс валялся, хоть и разобранный, но рядом.

Насчет простоты. Ясно, что это для красного словца. Даже проведение таких простейших опытов требуют времени и материальных затрат. Трансы хоть и бу но не дешевы. Конденсаторы больших емкостей еще дороже. Кстати, о емкостях — это только фазосдвигающие кондеры для моторов или гасители реактивной мощи. Электролиты не годятся. И еще питание резонансного контура от сети это явное расточительство и годится только для наработки опыта. Это можно проверить Если запитать рез контур через диод (диод помощнее), то есть половиной синусоиды контур упорно продолжает выдавать синус. Вспомним тесла питание его катушек только от однополярных импульсов а это блокинг-генератор.

Тому, кто хочет строить доказательную схему или мини черпачок. Схему резонанса токов (она лучше всех подходит) запитать от блокинг-генератора катушки, которого можно намотать прямо на железо дросселя. Можно, как у М, выполнить отдельным блоком. Частоту поднять, но для железа не выше килогерца оптимально 400 Гц. Совет тем у кого, как говорят, выпадает из резонанса под нагрузкой. Для начала получите результат на конкретную нагрузку. Лампа накаливания или двигатель.

Резонансный трансформатор Тесла — больше не секрет

Знакомство с трансформатором Н. Тесла.

Новомодный феномен резонансного трансформатора Николы Тесла возник не давно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательного выступления в цирке, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных частей, см. рис.1а;

1. Генерирующей части, состоящей из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Частота генерации зависит от напряжения питания, емкости конденсатора С1, характеризующее время разряда, а так же промежутком между электродами разрядника;

2. Резонансной катушки индуктивности L2, заземления и сферы, см. рис. 1а.

Если вглядеться в схему этого трансформатора внимательнее, то мы увидим известную схему последовательного колебательного контура, состоящего из катушки индуктивности L2 с открытой емкостью С, образованной между сферой и землей. Это открытый колебательный контур, который был открыт Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура:

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора – равный ему, так называемый, ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 19-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину где — электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн. В последствии Г.Герц опираясь на эту теорию доказал, что электромагнитное поле излучаемое электрическим вибратором равно полю излучаемое емкостным излучателем.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое поле Е ? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, сфера и заземление выполняют роль пластин открытого конденсатора. Геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Иными словами, режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии. Весь фокус состоит в том, что коэффициент трансформации резонансного трансформатора выше соотношения витков катушек L1/L2 и значительно выше, чем в трансформаторах с ферро сердечниками. Здесь индуктивность L2, сфера и заземление, представляют из себя открытый резонансный колебательный контур. Именно по этому трансформатор Тесла называется резонансным.

Рассмотрим работу трансформатора Тесла, как последовательный колебательный контур:

— Этот контур необходимо рассматривать как обычный LC – элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (φ=0), если ХL = — Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Если мы рассмотрим схему изображенную на рис. 3, то мы сможем предоставить простые расчеты, из которых видно, что напряжение на пластинах излучателя вычисляется исходя из добротности контура Q, которая реально может находиться в пределах 20 – 50 и много выше.

Где полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Оцените статью